Informações sobre o curso
602,732 visualizações recentes

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 18 horas para completar

Sugerido: 11 hours/week...

Inglês

Legendas: Inglês, Coreano, Chinês (simplificado)

Habilidades que você terá

Recurrent Neural NetworkArtificial Neural NetworkDeep LearningLong Short-Term Memory (ISTM)

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 18 horas para completar

Sugerido: 11 hours/week...

Inglês

Legendas: Inglês, Coreano, Chinês (simplificado)

Programa - O que você aprenderá com este curso

Semana
1
6 horas para concluir

Recurrent Neural Networks

Learn about recurrent neural networks. This type of model has been proven to perform extremely well on temporal data. It has several variants including LSTMs, GRUs and Bidirectional RNNs, which you are going to learn about in this section....
12 vídeos (total de (Total 112 mín.) min), 4 testes
12 videos
Notation9min
Recurrent Neural Network Model16min
Backpropagation through time6min
Different types of RNNs9min
Language model and sequence generation12min
Sampling novel sequences8min
Vanishing gradients with RNNs6min
Gated Recurrent Unit (GRU)17min
Long Short Term Memory (LSTM)9min
Bidirectional RNN8min
Deep RNNs5min
1 exercício prático
Recurrent Neural Networks20min
Semana
2
4 horas para concluir

Natural Language Processing & Word Embeddings

Natural language processing with deep learning is an important combination. Using word vector representations and embedding layers you can train recurrent neural networks with outstanding performances in a wide variety of industries. Examples of applications are sentiment analysis, named entity recognition and machine translation....
10 vídeos (total de (Total 102 mín.) min), 3 testes
10 videos
Using word embeddings9min
Properties of word embeddings11min
Embedding matrix5min
Learning word embeddings10min
Word2Vec12min
Negative Sampling11min
GloVe word vectors11min
Sentiment Classification7min
Debiasing word embeddings11min
1 exercício prático
Natural Language Processing & Word Embeddings20min
Semana
3
5 horas para concluir

Sequence models & Attention mechanism

Sequence models can be augmented using an attention mechanism. This algorithm will help your model understand where it should focus its attention given a sequence of inputs. This week, you will also learn about speech recognition and how to deal with audio data....
11 vídeos (total de (Total 103 mín.) min), 3 testes
11 videos
Picking the most likely sentence8min
Beam Search11min
Refinements to Beam Search11min
Error analysis in beam search9min
Bleu Score (optional)16min
Attention Model Intuition9min
Attention Model12min
Speech recognition8min
Trigger Word Detection5min
Conclusion and thank you2min
1 exercício prático
Sequence models & Attention mechanism20min
4.8
1,548 avaliaçõesChevron Right

37%

comecei uma nova carreira após concluir estes cursos

37%

consegui um benefício significativo de carreira com este curso

11%

recebi um aumento ou promoção

Melhores avaliações

por JYOct 30th 2018

The lectures covers lots of SOTA deep learning algorithms and the lectures are well-designed and easy to understand. The programming assignment is really good to enhance the understanding of lectures.

por SDSep 28th 2018

Great hands on instruction on how RNNs work and how they are used to solve real problems. It was particularly useful to use Conv1D, Bidirectional and Attention layers into RNNs and see how they work.

Instrutores

Avatar

Andrew Ng

CEO/Founder Landing AI; Co-founder, Coursera; Adjunct Professor, Stanford University; formerly Chief Scientist,Baidu and founding lead of Google Brain
Avatar

Head Teaching Assistant - Kian Katanforoosh

Lecturer of Computer Science at Stanford University, deeplearning.ai, Ecole CentraleSupelec
Avatar

Teaching Assistant - Younes Bensouda Mourri

Mathematical & Computational Sciences, Stanford University, deeplearning.ai
Computer Science

Sobre deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Sobre o Programa de cursos integrados Aprendizagem profunda

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizagem profunda

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.