Informações sobre o curso

1,579,433 visualizações recentes

Resultados de carreira do aprendiz

41%

comecei uma nova carreira após concluir estes cursos

37%

consegui um benefício significativo de carreira com este curso

12%

recebi um aumento ou promoção
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível iniciante
Aprox. 18 horas para completar
Inglês
Legendas: Chinês (tradicional), Chinês (simplificado), Português (Brasil), Coreano, Turco, Inglês, Espanhol...

Habilidades que você terá

HyperparameterTensorflowHyperparameter OptimizationDeep Learning

Resultados de carreira do aprendiz

41%

comecei uma nova carreira após concluir estes cursos

37%

consegui um benefício significativo de carreira com este curso

12%

recebi um aumento ou promoção
Certificados compartilháveis
Tenha o certificado após a conclusão
100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis
Redefinir os prazos de acordo com sua programação.
Nível iniciante
Aprox. 18 horas para completar
Inglês
Legendas: Chinês (tradicional), Chinês (simplificado), Português (Brasil), Coreano, Turco, Inglês, Espanhol...

oferecido por

Logotipo de deeplearning.ai

deeplearning.ai

Programa - O que você aprenderá com este curso

Classificação do conteúdoThumbs Up96%(46,269 classificações)Info
Semana
1

Semana 1

8 horas para concluir

Practical aspects of Deep Learning

8 horas para concluir
15 vídeos (Total 131 mín.), 3 leituras, 4 testes
15 videos
Bias / Variance8min
Basic Recipe for Machine Learning6min
Regularization9min
Why regularization reduces overfitting?7min
Dropout Regularization9min
Understanding Dropout7min
Other regularization methods8min
Normalizing inputs5min
Vanishing / Exploding gradients6min
Weight Initialization for Deep Networks6min
Numerical approximation of gradients6min
Gradient checking6min
Gradient Checking Implementation Notes5min
Yoshua Bengio interview25min
3 leituras
Clarification about Upcoming Regularization Video1min
Clarification about Upcoming Understanding dropout Video1min
Clarification about Upcoming Normalizing Inputs Video1min
1 exercício prático
Practical aspects of deep learning30min
Semana
2

Semana 2

5 horas para concluir

Optimization algorithms

5 horas para concluir
11 vídeos (Total 92 mín.), 2 leituras, 2 testes
11 videos
Understanding mini-batch gradient descent11min
Exponentially weighted averages5min
Understanding exponentially weighted averages9min
Bias correction in exponentially weighted averages4min
Gradient descent with momentum9min
RMSprop7min
Adam optimization algorithm7min
Learning rate decay6min
The problem of local optima5min
Yuanqing Lin interview13min
2 leituras
Clarification about Upcoming Adam Optimization Video1min
Clarification about Learning Rate Decay Video1min
1 exercício prático
Optimization algorithms30min
Semana
3

Semana 3

5 horas para concluir

Hyperparameter tuning, Batch Normalization and Programming Frameworks

5 horas para concluir
11 vídeos (Total 104 mín.), 2 leituras, 2 testes
11 videos
Using an appropriate scale to pick hyperparameters8min
Hyperparameters tuning in practice: Pandas vs. Caviar6min
Normalizing activations in a network8min
Fitting Batch Norm into a neural network12min
Why does Batch Norm work?11min
Batch Norm at test time5min
Softmax Regression11min
Training a softmax classifier10min
Deep learning frameworks4min
TensorFlow16min
2 leituras
Clarifications about Upcoming Softmax Video1min
Note about TensorFlow 1 and TensorFlow 210min
1 exercício prático
Hyperparameter tuning, Batch Normalization, Programming Frameworks30min

Avaliações

Principais avaliações do IMPROVING DEEP NEURAL NETWORKS: HYPERPARAMETER TUNING, REGULARIZATION AND OPTIMIZATION

Visualizar todas as avaliações

Sobre Programa de cursos integrados Aprendizagem profunda

If you want to break into AI, this Specialization will help you do so. Deep Learning is one of the most highly sought after skills in tech. We will help you become good at Deep Learning. In five courses, you will learn the foundations of Deep Learning, understand how to build neural networks, and learn how to lead successful machine learning projects. You will learn about Convolutional networks, RNNs, LSTM, Adam, Dropout, BatchNorm, Xavier/He initialization, and more. You will work on case studies from healthcare, autonomous driving, sign language reading, music generation, and natural language processing. You will master not only the theory, but also see how it is applied in industry. You will practice all these ideas in Python and in TensorFlow, which we will teach. You will also hear from many top leaders in Deep Learning, who will share with you their personal stories and give you career advice. AI is transforming multiple industries. After finishing this specialization, you will likely find creative ways to apply it to your work. We will help you master Deep Learning, understand how to apply it, and build a career in AI....
Aprendizagem profunda

Perguntas Frequentes – FAQ

  • Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:

    • The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.

    • The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.

  • When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.

  • If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.

  • Yes, Coursera provides financial aid to learners who cannot afford the fee. Apply for it by clicking on the Financial Aid link beneath the "Enroll" button on the left. You'll be prompted to complete an application and will be notified if you are approved. You'll need to complete this step for each course in the Specialization, including the Capstone Project. Learn more.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.