Informações sobre o curso
32,136 visualizações recentes

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 17 horas para completar

Sugerido: 4 weeks of study, 4-5 hours/week...

Inglês

Legendas: Inglês

Habilidades que você terá

ForecastingMachine LearningTensorflowTime Seriesprediction

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 17 horas para completar

Sugerido: 4 weeks of study, 4-5 hours/week...

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
3 horas para concluir

Sequences and Prediction

Hi Learners and welcome to this course on sequences and prediction! In this course we'll take a look at some of the unique considerations involved when handling sequential time series data -- where values change over time, like the temperature on a particular day, or the number of visitors to your web site. We'll discuss various methodologies for predicting future values in these time series, building on what you've learned in previous courses!

...
10 vídeos ((Total 33 mín.)), 3 leituras, 3 testes
10 videos
Time series examples4min
Machine learning applied to time series1min
Common patterns in time series5min
Introduction to time series4min
Train, validation and test sets3min
Metrics for evaluating performance2min
Moving average and differencing2min
Trailing versus centered windows1min
Forecasting4min
3 leituras
Introduction to time series notebook10min
Forecasting notebook10min
Week 1 outro10min
1 exercício prático
Week 1 Quiz
Semana
2
3 horas para concluir

Deep Neural Network for time series

Having explored time series and some of the common attributes of time series such as trend and seasonality, and then having used statistical methods for projection, let's now begin to teach neural networks to recognize and predict on time series!

...
10 vídeos ((Total 27 mín.)), 5 leituras, 3 testes
10 videos
Preparing features and labels4min
Preparing features and labels3min
Feeding windowed dataset into neural network2min
Single layer neural network2min
Machine learning on time windows37s
Prediction2min
More on single layer neural network2min
Deep neural network training, tuning and prediction4min
Deep neural network3min
5 leituras
Preparing features and labels notebook10min
Sequence bias10min
Single layer neural network notebook10min
Deep neural network notebook10min
Week 2 outro10min
1 exercício prático
Week 2 Quiz
Semana
3
3 horas para concluir

Recurrent Neural Networks for time series

Recurrent Neural networks and Long Short Term Memory networks are really useful to classify and predict on sequential data. This week we'll explore using them with time series...

...
10 vídeos ((Total 21 mín.)), 5 leituras, 3 testes
10 videos
Conceptual overview2min
Shape of the inputs to the RNN2min
Outputting a Sequence1min
Lambda layers1min
Adjusting the learning rate dynamically2min
RNN1min
LSTM1min
Coding LSTMs2min
More on LSTM1min
5 leituras
More info on Huber loss10min
RNN notebook10min
Link to the LSTM lesson10min
LSTM notebook10min
Week 3 outro10min
1 exercício prático
Week 3 Quiz
Semana
4
3 horas para concluir

Real-world time series data

On top of DNNs and RNNs, let's also add convolutions, and then put it all together using a real-world data series -- one which measures sunspot activity over hundreds of years, and see if we can predict using it.

...
11 vídeos ((Total 24 mín.)), 5 leituras, 3 testes
11 videos
Convolutions58s
Bi-directional LSTMs3min
LSTM1min
Real data - sunspots3min
Train and tune the model3min
Prediction1min
Sunspots1min
Combining our tools for analysis3min
Congratulations!38s
Specialization outro - A conversation with Andrew Ng2min
5 leituras
Convolutional neural networks course10min
More on batch sizing10min
LSTM notebook10min
Sunspots notebook10min
Course 4 outro10min
1 exercício prático
Week 4 Quiz

Instrutores

Avatar

Laurence Moroney

AI Advocate
Google Brain

Sobre deeplearning.ai

deeplearning.ai is Andrew Ng's new venture which amongst others, strives for providing comprehensive AI education beyond borders....

Sobre o Programa de cursos integrados TensorFlow in Practice

Discover the tools software developers use to build scalable AI-powered algorithms in TensorFlow, a popular open-source machine learning framework. In this four-course Specialization, you’ll explore exciting opportunities for AI applications. Begin by developing an understanding of how to build and train neural networks. Improve a network’s performance using convolutions as you train it to identify real-world images. You’ll teach machines to understand, analyze, and respond to human speech with natural language processing systems. Learn to process text, represent sentences as vectors, and input data to a neural network. You’ll even train an AI to create original poetry! AI is already transforming industries across the world. After finishing this Specialization, you’ll be able to apply your new TensorFlow skills to a wide range of problems and projects. Courses 1-3 are available now, with Course 4 launching in July....
TensorFlow in Practice

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.