Informações sobre o curso
68,828 visualizações recentes

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível avançado

Aprox. 30 horas para completar

Inglês

Legendas: Inglês

Habilidades que você terá

Bayesian NetworkGraphical ModelMarkov Random Field

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível avançado

Aprox. 30 horas para completar

Inglês

Legendas: Inglês

Os alunos que estão fazendo este Course são

  • Machine Learning Engineers
  • Data Scientists
  • Biostatisticians
  • Research Assistants
  • Researchers

Programa - O que você aprenderá com este curso

Semana
1
1 hora para concluir

Introduction and Overview

4 vídeos (Total 35 mín.), 1 teste
4 videos
Overview and Motivation19min
Distributions4min
Factors6min
1 exercício prático
Basic Definitions8min
10 horas para concluir

Bayesian Network (Directed Models)

15 vídeos (Total 190 mín.), 6 leituras, 4 testes
15 videos
Reasoning Patterns9min
Flow of Probabilistic Influence14min
Conditional Independence12min
Independencies in Bayesian Networks18min
Naive Bayes9min
Application - Medical Diagnosis9min
Knowledge Engineering Example - SAMIAM14min
Basic Operations 13min
Moving Data Around 16min
Computing On Data 13min
Plotting Data 9min
Control Statements: for, while, if statements 12min
Vectorization 13min
Working on and Submitting Programming Exercises 3min
6 leituras
Setting Up Your Programming Assignment Environment10min
Installing Octave/MATLAB on Windows10min
Installing Octave/MATLAB on Mac OS X (10.10 Yosemite and 10.9 Mavericks)10min
Installing Octave/MATLAB on Mac OS X (10.8 Mountain Lion and Earlier)10min
Installing Octave/MATLAB on GNU/Linux10min
More Octave/MATLAB resources10min
3 exercícios práticos
Bayesian Network Fundamentals6min
Bayesian Network Independencies10min
Octave/Matlab installation2min
Semana
2
1 hora para concluir

Template Models for Bayesian Networks

4 vídeos (Total 66 mín.), 1 teste
4 videos
Temporal Models - DBNs23min
Temporal Models - HMMs12min
Plate Models20min
1 exercício prático
Template Models20min
11 horas para concluir

Structured CPDs for Bayesian Networks

4 vídeos (Total 49 mín.), 3 testes
4 videos
Tree-Structured CPDs14min
Independence of Causal Influence13min
Continuous Variables13min
2 exercícios práticos
Structured CPDs8min
BNs for Genetic Inheritance PA Quiz22min
Semana
3
17 horas para concluir

Markov Networks (Undirected Models)

7 vídeos (Total 106 mín.), 3 testes
7 videos
General Gibbs Distribution15min
Conditional Random Fields22min
Independencies in Markov Networks4min
I-maps and perfect maps20min
Log-Linear Models22min
Shared Features in Log-Linear Models8min
2 exercícios práticos
Markov Networks8min
Independencies Revisited6min
Semana
4
21 horas para concluir

Decision Making

3 vídeos (Total 61 mín.), 3 testes
3 videos
Utility Functions18min
Value of Perfect Information17min
2 exercícios práticos
Decision Theory8min
Decision Making PA Quiz18min
4.7
245 avaliaçõesChevron Right

23%

comecei uma nova carreira após concluir estes cursos

22%

consegui um benefício significativo de carreira com este curso

11%

recebi um aumento ou promoção

Principais avaliações do Probabilistic Graphical Models 1: Representation

por STJul 13th 2017

Prof. Koller did a great job communicating difficult material in an accessible manner. Thanks to her for starting Coursera and offering this advanced course so that we can all learn...Kudos!!

por CMOct 23rd 2017

The course was deep, and well-taught. This is not a spoon-feeding course like some others. The only downside were some "mechanical" problems (e.g. code submission didn't work for me).

Instrutores

Avatar

Daphne Koller

Professor
School of Engineering

Sobre Universidade de Stanford

The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is an American private research university located in Stanford, California on an 8,180-acre (3,310 ha) campus near Palo Alto, California, United States....

Sobre Programa de cursos integrados Modelos Gráficos Probabilísticos

Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems....
Modelos Gráficos Probabilísticos

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

  • Apply the basic process of representing a scenario as a Bayesian network or a Markov network

    Analyze the independence properties implied by a PGM, and determine whether they are a good match for your distribution

    Decide which family of PGMs is more appropriate for your task

    Utilize extra structure in the local distribution for a Bayesian network to allow for a more compact representation, including tree-structured CPDs, logistic CPDs, and linear Gaussian CPDs

    Represent a Markov network in terms of features, via a log-linear model

    Encode temporal models as a Hidden Markov Model (HMM) or as a Dynamic Bayesian Network (DBN)

    Encode domains with repeating structure via a plate model

    Represent a decision making problem as an influence diagram, and be able to use that model to compute optimal decision strategies and information gathering strategies

    Honors track learners will be able to apply these ideas for complex, real-world problems

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.