Sobre este Programa de cursos integrados

20,230 visualizações recentes
Probabilistic graphical models (PGMs) are a rich framework for encoding probability distributions over complex domains: joint (multivariate) distributions over large numbers of random variables that interact with each other. These representations sit at the intersection of statistics and computer science, relying on concepts from probability theory, graph algorithms, machine learning, and more. They are the basis for the state-of-the-art methods in a wide variety of applications, such as medical diagnosis, image understanding, speech recognition, natural language processing, and many, many more. They are also a foundational tool in formulating many machine learning problems.
Resultados de carreira do aprendiz
50%
Começou uma nova carreira depois de completar o Programa de cursos integrados.
20%
Conseguiu um aumento ou uma promoção.
Certificados compartilháveis
Tenha o certificado após a conclusão
Cursos 100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível
Definição e manutenção de prazos flexíveis.
Nível avançado
Aprox. 4 meses para completar
11 horas/semana sugeridas
Inglês
Legendas: Inglês
Resultados de carreira do aprendiz
50%
Começou uma nova carreira depois de completar o Programa de cursos integrados.
20%
Conseguiu um aumento ou uma promoção.
Certificados compartilháveis
Tenha o certificado após a conclusão
Cursos 100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível
Definição e manutenção de prazos flexíveis.
Nível avançado
Aprox. 4 meses para completar
11 horas/semana sugeridas
Inglês
Legendas: Inglês

Este Programa de cursos integrados contém 3 cursos

Curso1

Curso 1

Probabilistic Graphical Models 1: Representation

4.7
estrelas
1,276 classificações
282 avaliações
Curso2

Curso 2

Probabilistic Graphical Models 2: Inference

4.6
estrelas
442 classificações
65 avaliações
Curso3

Curso 3

Probabilistic Graphical Models 3: Learning

4.6
estrelas
272 classificações
41 avaliações

oferecido por

Logotipo de Universidade de Stanford

Universidade de Stanford

Perguntas Frequentes – FAQ

  • Este Programa de cursos integrados não oferece créditos universitários, mas algumas universidades podem aceitar certificados de Programas de cursos integrados que podem ser convertidos em créditos. Entre em contato com sua instituição para saber mais. Com os cursos on-line e os certificados Mastertrack™ do Coursera, é possível ganhar créditos universitários.

  • Se você se inscrever, terá 7 dias para testar sem custo e, durante este período, pode cancelar sem multa. Depois disso, não reembolsamos, mas você pode cancelar sua inscrição a qualquer momento. Veja nossa política para o reembolso total.

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Sim, a Coursera oferece auxílio financeiro ao aluno que não possa pagar a taxa. Faça a solicitação clicando no link Auxílio Financeiro, abaixo do botão "Inscreva-se" à esquerda. Preencha uma solicitação e será notificado caso seja aprovado. Você terá que completar esta etapa para cada curso na Especialização, incluindo o Trabalho de Conclusão de Curso. Saiba mais .

  • Quando se inscrever no curso, você terá acesso a todos os cursos na Especialização e ganhará um certificado quando concluir o trabalho. Se você só quiser ler e visualizar o conteúdo do curso, pode auditar o curso gratuitamente. Se não puder pagar a taxa, você pode solicitar ajuda financeira.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • This class does require some abstract thinking and mathematical skills. However, it is designed to require fairly little background, and a motivated student can pick up the background material as the concepts are introduced. We hope that, using our new learning platform, it should be possible for everyone to understand all of the core material.

    Though, you should be able to program in at least one programming language and have a computer (Windows, Mac or Linux) with internet access (programming assignments will be conducted in Matlab or Octave). It also helps to have some previous exposure to basic concepts in discrete probability theory (independence, conditional independence, and Bayes' rule).

  • For best results, the courses should be taken in order.

  • No.

  • You will be able to take a complex task and understand how it can be encoded as a probabilistic graphical model. You will now know how to implement the core probabilistic inference techniques, how to select the right inference method for the task, and how to use inference to reason. You will also know how to take a data set and use it to learn a model, whether from scratch, or to refine or complete a partially specified model.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.