Informações sobre o curso
4.6
13,870 classificações
2,859 avaliações

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

You should have beginner level experience in Python. Familarity with regression is recommended.

Aprox. 20 horas para completar

Inglês

Legendas: Árabe, Francês, Chinês (simplificado), Vietnamita, Inglês, Japonês...

O que você vai aprender

  • Check

    Collect detailed information using R profiler

  • Check

    Configure statistical programming software

  • Check

    Make use of R loop functions and debugging tools

  • Check

    Understand critical programming language concepts

Habilidades que você terá

Data AnalysisDebuggingR ProgrammingRstudio

100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

You should have beginner level experience in Python. Familarity with regression is recommended.

Aprox. 20 horas para completar

Inglês

Legendas: Árabe, Francês, Chinês (simplificado), Vietnamita, Inglês, Japonês...

Programa - O que você aprenderá com este curso

Semana
1
25 horas para concluir

Week 1: Background, Getting Started, and Nuts & Bolts

This week covers the basics to get you started up with R. The Background Materials lesson contains information about course mechanics and some videos on installing R. The Week 1 videos cover the history of R and S, go over the basic data types in R, and describe the functions for reading and writing data. I recommend that you watch the videos in the listed order, but watching the videos out of order isn't going to ruin the story. ...
28 vídeos (total de (Total 129 mín.) min), 9 leituras, 8 testes
28 videos
Installing R on Windows3min
Installing R Studio (Mac)1min
Writing Code / Setting Your Working Directory (Windows)7min
Writing Code / Setting Your Working Directory (Mac)7min
Introduction1min
Overview and History of R16min
Getting Help13min
R Console Input and Evaluation4min
Data Types - R Objects and Attributes4min
Data Types - Vectors and Lists6min
Data Types - Matrices3min
Data Types - Factors4min
Data Types - Missing Values2min
Data Types - Data Frames2min
Data Types - Names Attribute1min
Data Types - Summary43s
Reading Tabular Data5min
Reading Large Tables7min
Textual Data Formats4min
Connections: Interfaces to the Outside World4min
Subsetting - Basics4min
Subsetting - Lists4min
Subsetting - Matrices2min
Subsetting - Partial Matching1min
Subsetting - Removing Missing Values3min
Vectorized Operations3min
Introduction to swirl1min
9 leituras
Welcome to R Programming10min
About the Instructor10min
Pre-Course Survey10min
Syllabus10min
Course Textbook10min
Course Supplement: The Art of Data Science10min
Data Science Podcast: Not So Standard Deviations10min
Getting Started and R Nuts and Bolts10min
Practical R Exercises in swirl Part 110min
1 exercício prático
Week 1 Quiz40min
Semana
2
12 horas para concluir

Week 2: Programming with R

Welcome to Week 2 of R Programming. This week, we take the gloves off, and the lectures cover key topics like control structures and functions. We also introduce the first programming assignment for the course, which is due at the end of the week....
13 vídeos (total de (Total 91 mín.) min), 3 leituras, 5 testes
13 videos
Control Structures - If-else1min
Control Structures - For loops4min
Control Structures - While loops3min
Control Structures - Repeat, Next, Break4min
Your First R Function10min
Functions (part 1)9min
Functions (part 2)7min
Scoping Rules - Symbol Binding10min
Scoping Rules - R Scoping Rules8min
Scoping Rules - Optimization Example (OPTIONAL)9min
Coding Standards8min
Dates and Times10min
3 leituras
Week 2: Programming with R10min
Practical R Exercises in swirl Part 210min
Programming Assignment 1 INSTRUCTIONS: Air Pollution10min
2 exercícios práticos
Week 2 Quiz20min
Programming Assignment 1: Quiz20min
Semana
3
10 horas para concluir

Week 3: Loop Functions and Debugging

We have now entered the third week of R Programming, which also marks the halfway point. The lectures this week cover loop functions and the debugging tools in R. These aspects of R make R useful for both interactive work and writing longer code, and so they are commonly used in practice....
8 vídeos (total de (Total 61 mín.) min), 2 leituras, 4 testes
8 videos
Loop Functions - apply7min
Loop Functions - mapply4min
Loop Functions - tapply3min
Loop Functions - split9min
Debugging Tools - Diagnosing the Problem12min
Debugging Tools - Basic Tools6min
Debugging Tools - Using the Tools8min
2 leituras
Week 3: Loop Functions and Debugging10min
Practical R Exercises in swirl Part 310min
1 exercício prático
Week 3 Quiz10min
Semana
4
11 horas para concluir

Week 4: Simulation & Profiling

This week covers how to simulate data in R, which serves as the basis for doing simulation studies. We also cover the profiler in R which lets you collect detailed information on how your R functions are running and to identify bottlenecks that can be addressed. The profiler is a key tool in helping you optimize your programs. Finally, we cover the str function, which I personally believe is the most useful function in R....
6 vídeos (total de (Total 42 mín.) min), 4 leituras, 5 testes
6 videos
Simulation - Generating Random Numbers7min
Simulation - Simulating a Linear Model4min
Simulation - Random Sampling2min
R Profiler (part 1)10min
R Profiler (part 2)10min
4 leituras
Week 4: Simulation & Profiling10min
Practical R Exercises in swirl Part 410min
Programming Assignment 3 INSTRUCTIONS: Hospital Quality10min
Post-Course Survey10min
2 exercícios práticos
Week 4 Quiz20min
Programming Assignment 3: Quiz20min
4.6
2,859 avaliaçõesChevron Right

33%

comecei uma nova carreira após concluir estes cursos

32%

consegui um benefício significativo de carreira com este curso

11%

recebi um aumento ou promoção

Melhores avaliações

por WHFeb 3rd 2016

"R Programming" forces you to dive in deep.\n\nThese skills serve as a strong basis for the rest of the data science specialization.\n\nMaterial is in depth, but presented clearly. Highly recommended!

por EJJul 12th 2016

Excellent course! I already knew a lot about R - but this class helped me solidify what I already knew, taught me lots of new tricks, and now I have a certificate that says I know `something' about R!

Instrutores

Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Sobre Universidade Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Sobre o Programa de cursos integrados Ciência de Dados

Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you'll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material....
Ciência de Dados

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.