Sobre este Programa de cursos integrados
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível iniciante

Nível iniciante

You should have beginner level experience in Python. Familarity with regression is recommended.

Horas para completar

Aprox. 8 meses para completar

5 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Árabe, Francês, Chinês (simplificado), Grego, Italiano, Portuguese (Brazilian), Vietnamita, Russo, Turco, Hebraico, Japonês...

O que você vai aprender

  • Check

    Use R to clean, analyze, and visualize data.

  • Check

    Navigate the entire data science pipeline from data acquisition to publication.

  • Check

    Use GitHub to manage data science projects.

  • Check

    Perform regression analysis, least squares and inference using regression models.

Habilidades que você terá

GithubMachine LearningR ProgrammingRegression Analysis
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível iniciante

Nível iniciante

You should have beginner level experience in Python. Familarity with regression is recommended.

Horas para completar

Aprox. 8 meses para completar

5 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Árabe, Francês, Chinês (simplificado), Grego, Italiano, Portuguese (Brazilian), Vietnamita, Russo, Turco, Hebraico, Japonês...

Como o Programa de cursos integrados funciona

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 10 cursos

Curso1

As Ferramentas do Cientista de Dados

4.5
17,624 classificações
3,593 avaliações
In this course you will get an introduction to the main tools and ideas in the data scientist's toolbox. The course gives an overview of the data, questions, and tools that data analysts and data scientists work with. There are two components to this course. The first is a conceptual introduction to the ideas behind turning data into actionable knowledge. The second is a practical introduction to the tools that will be used in the program like version control, markdown, git, GitHub, R, and RStudio....
Curso2

Linguagem R

4.6
13,049 classificações
2,704 avaliações
In this course you will learn how to program in R and how to use R for effective data analysis. You will learn how to install and configure software necessary for a statistical programming environment and describe generic programming language concepts as they are implemented in a high-level statistical language. The course covers practical issues in statistical computing which includes programming in R, reading data into R, accessing R packages, writing R functions, debugging, profiling R code, and organizing and commenting R code. Topics in statistical data analysis will provide working examples....
Curso3

Obtenção e Limpeza de Dados

4.6
5,573 classificações
883 avaliações
Before you can work with data you have to get some. This course will cover the basic ways that data can be obtained. The course will cover obtaining data from the web, from APIs, from databases and from colleagues in various formats. It will also cover the basics of data cleaning and how to make data “tidy”. Tidy data dramatically speed downstream data analysis tasks. The course will also cover the components of a complete data set including raw data, processing instructions, codebooks, and processed data. The course will cover the basics needed for collecting, cleaning, and sharing data....
Curso4

Análise Exploratória de Dados

4.7
4,237 classificações
616 avaliações
This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data....

Instrutores

Avatar

Jeff Leek, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Roger D. Peng, PhD

Associate Professor, Biostatistics
Bloomberg School of Public Health
Avatar

Brian Caffo, PhD

Professor, Biostatistics
Bloomberg School of Public Health

Parceiros do setor

Industry Partner Logo #0
Industry Partner Logo #1

Sobre Universidade Johns Hopkins

The mission of The Johns Hopkins University is to educate its students and cultivate their capacity for life-long learning, to foster independent and original research, and to bring the benefits of discovery to the world....

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • Esta Especialização não carrega créditos universitários, mas algumas universidades podem optar por aceitar certificados de especialização como crédito. Verifique com sua instituição para saber mais.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 3-6 months.

  • Each course in the Specialization is offered monthly.

  • Some programming experience (in any language) is recommended. We also suggest a working knowledge of mathematics up to algebra (neither calculus or linear algebra are required).

  • Begin by taking The Data Scientist's Toolbox and Introduction to R Programming, in order. The other courses may be taken in any order, and in parallel if desired.

  • You’ll have a foundational understanding of the field and be prepared to continue studying data science.

  • Yes, you can access the course for free via www.coursera.org/jhu. This will allow you to explore the course, watch lectures, and participate in discussions for free. To be eligible to earn a certificate, you must either pay for enrollment or qualify for financial aid.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.