Classification with Transfer Learning in Keras

4.5
estrelas
142 classificações
oferecido por
Coursera Project Network
5,154 já se inscreveram
Neste projeto guiado, você irá:

How to implement transfer learning with Keras and TensorFlow

How to use transfer learning to solve image classification

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1.5 hour long project-based course, you will learn to create and train a Convolutional Neural Network (CNN) with an existing CNN model architecture, and its pre-trained weights. We will use the MobileNet model architecture along with its weights trained on the popular ImageNet dataset. By using a model with pre-trained weights, and then training just the last layers on a new dataset, we can drastically reduce the training time required to fit the model to the new data . The pre-trained model has already learned to recognize thousands on simple and complex image features, and we are using its output as the input to the last layers that we are training. In order to be successful in this project, you should be familiar with Python, Neural Networks, and CNNs. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

Deep LearningInductive TransferConvolutional Neural NetworkMachine LearningTensorflow

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Import Libraries and Helper functions

  2. Download the Pet dataset and extract relevant annotations

  3. Add functionality to create a random batch of examples and labels

  4. Create a new model with MobileNet v2 and a new fully connected top layer

  5. Create a data generator function and calculate training and validation steps

  6. Get predictions on a test batch and display the test batch along with prediction

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do CLASSIFICATION WITH TRANSFER LEARNING IN KERAS

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.