Chevron Left
Voltar para Classification with Transfer Learning in Keras

Comentários e feedback de alunos de Classification with Transfer Learning in Keras da instituição Coursera Project Network

4.5
estrelas
154 classificações

Sobre o curso

In this 1.5 hour long project-based course, you will learn to create and train a Convolutional Neural Network (CNN) with an existing CNN model architecture, and its pre-trained weights. We will use the MobileNet model architecture along with its weights trained on the popular ImageNet dataset. By using a model with pre-trained weights, and then training just the last layers on a new dataset, we can drastically reduce the training time required to fit the model to the new data . The pre-trained model has already learned to recognize thousands on simple and complex image features, and we are using its output as the input to the last layers that we are training. In order to be successful in this project, you should be familiar with Python, Neural Networks, and CNNs. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

AS

20 de jun de 2020

How else would I have learned this? What a great fast way to apply a concept in real code.

SK

28 de mai de 2020

Everything was as per description! Need more advanced tasks. Thanks, Amit Sir!

Filtrar por:

1 — 19 de 19 Avaliações para o Classification with Transfer Learning in Keras

por Mudit D

1 de jul de 2020

por Harshad L

7 de jun de 2020

por Alex S

20 de jun de 2020

por Sarah K

29 de mai de 2020

por M V

3 de jun de 2020

por EDWIN J

15 de jun de 2020

por Kamlesh C

20 de jun de 2020

por Gaikwad N

23 de jul de 2020

por p s

25 de jun de 2020

por tale p

23 de jun de 2020

por Patil B

2 de mai de 2020

por Ali E

22 de mar de 2020

por Yubesny V

13 de nov de 2020

por Utkarsh R

24 de mar de 2020

por Thanda H

11 de set de 2020

por Mr. M K S E

8 de mai de 2020

por Raj v

14 de jul de 2020

por Rathi.R

11 de jun de 2020

por Jorge G

25 de fev de 2021