Informações sobre o curso
4.6
1,309 classificações
350 avaliações
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 21 horas para completar

Sugerido: Four weeks of study, two-five hours/week depending on your familiarity with mathematical statistics....
Idiomas disponíveis

Inglês

Legendas: Inglês

Habilidades que você terá

StatisticsBayesian StatisticsBayesian InferenceR Programming
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 21 horas para completar

Sugerido: Four weeks of study, two-five hours/week depending on your familiarity with mathematical statistics....
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
3 horas para concluir

Probability and Bayes' Theorem

In this module, we review the basics of probability and Bayes’ theorem. In Lesson 1, we introduce the different paradigms or definitions of probability and discuss why probability provides a coherent framework for dealing with uncertainty. In Lesson 2, we review the rules of conditional probability and introduce Bayes’ theorem. Lesson 3 reviews common probability distributions for discrete and continuous random variables....
Reading
8 vídeos (total de (Total 38 mín.) min), 4 leituras, 5 testes
Video8 videos
Lesson 1.1 Classical and frequentist probability6min
Lesson 1.2 Bayesian probability and coherence3min
Lesson 2.1 Conditional probability4min
Lesson 2.2 Bayes' theorem6min
Lesson 3.1 Bernoulli and binomial distributions5min
Lesson 3.2 Uniform distribution5min
Lesson 3.3 Exponential and normal distributions2min
Reading4 leituras
Module 1 objectives, assignments, and supplementary materials3min
Background for Lesson 110min
Supplementary material for Lesson 23min
Supplementary material for Lesson 320min
Quiz5 exercícios práticos
Lesson 116min
Lesson 212min
Lesson 3.120min
Lesson 3.2-3.310min
Module 1 Honors15min
Semana
2
Horas para completar
3 horas para concluir

Statistical Inference

This module introduces concepts of statistical inference from both frequentist and Bayesian perspectives. Lesson 4 takes the frequentist view, demonstrating maximum likelihood estimation and confidence intervals for binomial data. Lesson 5 introduces the fundamentals of Bayesian inference. Beginning with a binomial likelihood and prior probabilities for simple hypotheses, you will learn how to use Bayes’ theorem to update the prior with data to obtain posterior probabilities. This framework is extended with the continuous version of Bayes theorem to estimate continuous model parameters, and calculate posterior probabilities and credible intervals....
Reading
11 vídeos (total de (Total 59 mín.) min), 5 leituras, 4 testes
Video11 videos
Lesson 4.2 Likelihood function and maximum likelihood7min
Lesson 4.3 Computing the MLE3min
Lesson 4.4 Computing the MLE: examples4min
Introduction to R6min
Plotting the likelihood in R4min
Plotting the likelihood in Excel4min
Lesson 5.1 Inference example: frequentist4min
Lesson 5.2 Inference example: Bayesian6min
Lesson 5.3 Continuous version of Bayes' theorem4min
Lesson 5.4 Posterior intervals7min
Reading5 leituras
Module 2 objectives, assignments, and supplementary materials3min
Background for Lesson 410min
Supplementary material for Lesson 45min
Background for Lesson 510min
Supplementary material for Lesson 510min
Quiz4 exercícios práticos
Lesson 48min
Lesson 5.1-5.218min
Lesson 5.3-5.416min
Module 2 Honors6min
Semana
3
Horas para completar
2 horas para concluir

Priors and Models for Discrete Data

In this module, you will learn methods for selecting prior distributions and building models for discrete data. Lesson 6 introduces prior selection and predictive distributions as a means of evaluating priors. Lesson 7 demonstrates Bayesian analysis of Bernoulli data and introduces the computationally convenient concept of conjugate priors. Lesson 8 builds a conjugate model for Poisson data and discusses strategies for selection of prior hyperparameters....
Reading
9 vídeos (total de (Total 66 mín.) min), 2 leituras, 4 testes
Video9 videos
Lesson 6.2 Prior predictive: binomial example5min
Lesson 6.3 Posterior predictive distribution4min
Lesson 7.1 Bernoulli/binomial likelihood with uniform prior3min
Lesson 7.2 Conjugate priors4min
Lesson 7.3 Posterior mean and effective sample size7min
Data analysis example in R12min
Data analysis example in Excel16min
Lesson 8.1 Poisson data8min
Reading2 leituras
Module 3 objectives, assignments, and supplementary materials3min
R and Excel code from example analysis10min
Quiz4 exercícios práticos
Lesson 612min
Lesson 715min
Lesson 815min
Module 3 Honors8min
Semana
4
Horas para completar
3 horas para concluir

Models for Continuous Data

This module covers conjugate and objective Bayesian analysis for continuous data. Lesson 9 presents the conjugate model for exponentially distributed data. Lesson 10 discusses models for normally distributed data, which play a central role in statistics. In Lesson 11, we return to prior selection and discuss ‘objective’ or ‘non-informative’ priors. Lesson 12 presents Bayesian linear regression with non-informative priors, which yield results comparable to those of classical regression. ...
Reading
9 vídeos (total de (Total 69 mín.) min), 5 leituras, 5 testes
Video9 videos
Lesson 10.1 Normal likelihood with variance known3min
Lesson 10.2 Normal likelihood with variance unknown3min
Lesson 11.1 Non-informative priors8min
Lesson 11.2 Jeffreys prior3min
Linear regression in R17min
Linear regression in Excel (Analysis ToolPak)13min
Linear regression in Excel (StatPlus by AnalystSoft)14min
Conclusion1min
Reading5 leituras
Module 4 objectives, assignments, and supplementary materials3min
Supplementary material for Lesson 1010min
Supplementary material for Lesson 115min
Background for Lesson 1210min
R and Excel code for regression5min
Quiz5 exercícios práticos
Lesson 912min
Lesson 1020min
Lesson 1110min
Regression15min
Module 4 Honors6min
4.6
350 avaliaçõesChevron Right
Direcionamento de carreira

38%

comecei uma nova carreira após concluir estes cursos
Benefício de carreira

21%

consegui um benefício significativo de carreira com este curso

Melhores avaliações

por GSSep 1st 2017

Good intro to Bayesian Statistics. Covers the basic concepts. Workload is reasonable and quizzes/exercises are helpful. Could include more exercises and additional backgroung/future reading materials.

por JHJun 27th 2018

Great course. The content moves at a nice pace and the videos are really good to follow. The Quizzes are also set at a good level. You can't pass this course unless you have understood the material.

Instrutores

Avatar

Herbert Lee

Professor
Applied Mathematics and Statistics

Sobre University of California, Santa Cruz

UC Santa Cruz is an outstanding public research university with a deep commitment to undergraduate education. It’s a place that connects people and programs in unexpected ways while providing unparalleled opportunities for students to learn through hands-on experience....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você adquire o Certificado, ganha acesso a todo o material do curso, incluindo avaliações com nota atribuída. Após concluir o curso, seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

  • You should have exposure to the concepts from a basic statistics class (for example, probability, the Central Limit Theorem, confidence intervals, linear regression) and calculus (integration and differentiation), but it is not expected that you remember how to do all of these items. The course will provide some overview of the statistical concepts, which should be enough to remind you of the necessary details if you've at least seen the concepts previously. On the calculus side, the lectures will include some use of calculus, so it is important that you understand the concept of an integral as finding the area under a curve, or differentiating to find a maximum, but you will not be required to do any integration or differentiation yourself.

  • Data analysis is done using computer software. This course provides the option of Excel or R. Equivalent content is provided for both options. A very brief introduction to R is provided for people who have never used it before, but this is not meant to be a course on R. Learners using Excel are expected to already have basic familiarity of Excel.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.