Deploy Models with TensorFlow Serving and Flask
197 classificações

7.789 já se inscreveram
Serve a TensorFlow model with TensorFlow Serving and Docker.
Create a web application with Flask to work as an interface to a served model.
197 classificações
7.789 já se inscreveram
Serve a TensorFlow model with TensorFlow Serving and Docker.
Create a web application with Flask to work as an interface to a served model.
In this 2-hour long project-based course, you will learn how to deploy TensorFlow models using TensorFlow Serving and Docker, and you will create a simple web application with Flask which will serve as an interface to get predictions from the served TensorFlow model. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your Internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with (e.g. Python, Jupyter, and Tensorflow) pre-installed. Prerequisites: In order to be successful in this project, you should be familiar with Python, TensorFlow, Flask, and HTML. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.
Deep Learning
Machine Learning
Tensorflow
Flask
model deployment
Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:
Introduction
Getting Started with the Flask App
Index Template
TensorFlow Serving
Getting Predictions
Connecting to Model Server
Displaying the Results
Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download
Em um vídeo de tela dividida, seu instrutor te orientará passo a passo
por MV
3 de jul de 2020Really simple and to the point course. Totally loved it.
por MS
14 de set de 2020This course helped me a lot, I was confused and looked up a lot of articles on deploying deep learning models with tensorflow but this one helped by a great margin.
por RB
16 de jun de 2020Nice way to get started with model deployment with web app.
por MB
10 de dez de 2020Excellent! I will rate this as the best rhyme project that I have done so far. The instructor does an excellent job in explaining all the parts.
Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.
Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.
Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.
Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.
Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.
Não há auxílio financeiro disponível para projetos guiados.
A participação como ouvinte não está disponível para projetos guiados.
Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.
Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.
Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.
Mais dúvidas? Visite o Central de Ajuda ao estudante.