Informações sobre o curso
4.7
1,679 classificações
355 avaliações
Programa de cursos integrados
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 15 horas para completar

Sugerido: 6 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Habilidades que você terá

Scala ProgrammingBig DataApache SparkSQL
Programa de cursos integrados
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 15 horas para completar

Sugerido: 6 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
12 horas para concluir

Getting Started + Spark Basics

Get up and running with Scala on your computer. Complete an example assignment to familiarize yourself with our unique way of submitting assignments. In this week, we'll bridge the gap between data parallelism in the shared memory scenario (learned in the Parallel Programming course, prerequisite) and the distributed scenario. We'll look at important concerns that arise in distributed systems, like latency and failure. We'll go on to cover the basics of Spark, a functionally-oriented framework for big data processing in Scala. We'll end the first week by exercising what we learned about Spark by immediately getting our hands dirty analyzing a real-world data set....
Reading
7 videos (Total 105 min), 5 leituras, 3 testes
Video7 videos
Data-Parallel to Distributed Data-Parallel10min
Latency24min
RDDs, Spark's Distributed Collection9min
RDDs: Transformation and Actions16min
Evaluation in Spark: Unlike Scala Collections!20min
Cluster Topology Matters!8min
Reading5 leituras
Tools setup10min
Eclipse tutorial10min
Intellij IDEA Tutorial10min
Sbt tutorial10min
Submitting solutions10min
Semana
2
Horas para completar
7 horas para concluir

Reduction Operations & Distributed Key-Value Pairs

This week, we'll look at a special kind of RDD called pair RDDs. With this specialized kind of RDD in hand, we'll cover essential operations on large data sets, such as reductions and joins....
Reading
4 videos (Total 59 min), 2 testes
Video4 videos
Pair RDDs6min
Transformations and Actions on Pair RDDs20min
Joins17min
Semana
3
Horas para completar
1 hora para concluir

Partitioning and Shuffling

This week we'll look at some of the performance implications of using operations like joins. Is it possible to get the same result without having to pay for the overhead of moving data over the network? We'll answer this question by delving into how we can partition our data to achieve better data locality, in turn optimizing some of our Spark jobs....
Reading
4 videos (Total 57 min)
Video4 videos
Partitioning14min
Optimizing with Partitioners11min
Wide vs Narrow Dependencies16min
Semana
4
Horas para completar
8 horas para concluir

Structured data: SQL, Dataframes, and Datasets

With our newfound understanding of the cost of data movement in a Spark job, and some experience optimizing jobs for data locality last week, this week we'll focus on how we can more easily achieve similar optimizations. Can structured data help us? We'll look at Spark SQL and its powerful optimizer which uses structure to apply impressive optimizations. We'll move on to cover DataFrames and Datasets, which give us a way to mix RDDs with the powerful automatic optimizations behind Spark SQL....
Reading
5 videos (Total 133 min), 2 testes
Video5 videos
Spark SQL17min
DataFrames (1)26min
DataFrames (2)30min
Datasets43min
4.7
355 avaliaçõesChevron Right
Direcionamento de carreira

10%

comecei uma nova carreira após concluir estes cursos
Benefício de carreira

83%

consegui um benefício significativo de carreira com este curso
Promoção de carreira

12%

recebi um aumento ou promoção

Melhores avaliações

por CCJun 8th 2017

The sessions where clearly explained and focused. Some of the exercises contained slightly confusing hints and information, but I'm sure those mistakes will be ironed out in future iterations. Thanks!

por CRApr 10th 2017

Great introduction to spark. Fun assignments. Since it was the first ever session, there were quite a few kinks with the assignments. But the discussion forums rescued me any time I was stuck.

Instrutores

Avatar

Dr. Heather Miller

Research Scientist
EPFL

Sobre École Polytechnique Fédérale de Lausanne

Sobre o Programa de cursos integrados Functional Programming in Scala

Discover how to write elegant code that works the first time it is run. This Specialization provides a hands-on introduction to functional programming using the widespread programming language, Scala. It begins from the basic building blocks of the functional paradigm, first showing how to use these blocks to solve small problems, before building up to combining these concepts to architect larger functional programs. You'll see how the functional paradigm facilitates parallel and distributed programming, and through a series of hands on examples and programming assignments, you'll learn how to analyze data sets small to large; from parallel programming on multicore architectures, to distributed programming on a cluster using Apache Spark. A final capstone project will allow you to apply the skills you learned by building a large data-intensive application using real-world data....
Functional Programming in Scala

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.