Chevron Left
Voltar para Machine Learning: Clustering & Retrieval

Comentários e feedback de alunos de Machine Learning: Clustering & Retrieval da instituição Universidade de Washington

4.7
estrelas
2,307 classificações

Sobre o curso

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Melhores avaliações

BK

24 de ago de 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.

JM

16 de jan de 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

Filtrar por:

276 — 300 de 381 Avaliações para o Machine Learning: Clustering & Retrieval

por Bingyan C

26 de dez de 2016

por Cuiqing L

5 de nov de 2016

por Job W

23 de jul de 2016

por VYSHNAVI G

24 de jan de 2022

por SUJAY P

21 de ago de 2020

por Badisa N

27 de jan de 2022

por Vaibhav K

29 de set de 2020

por Pritam B

13 de ago de 2020

por Frank

23 de nov de 2016

por Pavithra M

24 de mai de 2020

por Alexander L

23 de out de 2016

por Nagendra K M R

10 de nov de 2018

por Suneel M

9 de mai de 2018

por Lalithmohan S

26 de mar de 2018

por Ruchi S

24 de jan de 2018

por Kevin C N

26 de mar de 2017

por Asifur R M

19 de mar de 2017

por Kostyantyn B

7 de nov de 2017

por MARIANA L J

12 de ago de 2016

por Liang-Yao W

24 de ago de 2017

por Matt S

10 de nov de 2016

por Usman I

29 de dez de 2016

por Christopher M

30 de jun de 2019

por Bob v d H

2 de out de 2016

por Sundar J D

26 de set de 2016