Chevron Left
Voltar para Machine Learning: Clustering & Retrieval

Comentários e feedback de alunos de Machine Learning: Clustering & Retrieval da instituição Universidade de Washington

2,307 classificações

Sobre o curso

Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Melhores avaliações


24 de ago de 2016

excellent material! It would be nice, however, to mention some reading material, books or articles, for those interested in the details and the theories behind the concepts presented in the course.


16 de jan de 2017

Excellent course, well thought out lectures and problem sets. The programming assignments offer an appropriate amount of guidance that allows the students to work through the material on their own.

Filtrar por:

301 — 325 de 381 Avaliações para o Machine Learning: Clustering & Retrieval

por Maria V

2 de ago de 2016

por Yaron K

30 de set de 2016

por Alvis O

1 de mai de 2020

por Yin X

4 de nov de 2017

por Sander v d O

18 de out de 2016

por Pier L L

2 de ago de 2016

por George P

21 de nov de 2017

por Michele P

2 de set de 2017

por Nicolas S

2 de jan de 2020

por Gilles D

12 de ago de 2016

por Jayant S

25 de out de 2019

por Patrick A

30 de set de 2020

por Maxence L

15 de dez de 2016

por Alexandru I

25 de set de 2020

por Steve S

26 de ago de 2016

por Martin B

11 de abr de 2019

por Raj

27 de mai de 2017

por Abhishek S

10 de fev de 2018

por Siva J

26 de fev de 2017

por Srinivas C

7 de jan de 2019

por Ahmad A

31 de mar de 2017

por Andrey

9 de abr de 2017

por Marco A

20 de out de 2017

por Keith D

19 de jun de 2017

por Manish G

15 de jan de 2020