Sobre este Programa de cursos integrados
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 6 meses para completar

5 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Coreano, Vietnamita, Chinês (simplificado), Árabe...

Habilidades que você terá

Data Clustering AlgorithmsMachine LearningClassification AlgorithmsDecision Tree
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível intermediário

Nível intermediário

Horas para completar

Aprox. 6 meses para completar

5 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Coreano, Vietnamita, Chinês (simplificado), Árabe...

Como o Programa de cursos integrados funciona

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 4 cursos

Curso1

Machine Learning Foundations: A Case Study Approach

4.6
7,900 classificações
1,937 avaliações
Do you have data and wonder what it can tell you? Do you need a deeper understanding of the core ways in which machine learning can improve your business? Do you want to be able to converse with specialists about anything from regression and classification to deep learning and recommender systems? In this course, you will get hands-on experience with machine learning from a series of practical case-studies. At the end of the first course you will have studied how to predict house prices based on house-level features, analyze sentiment from user reviews, retrieve documents of interest, recommend products, and search for images. Through hands-on practice with these use cases, you will be able to apply machine learning methods in a wide range of domains. This first course treats the machine learning method as a black box. Using this abstraction, you will focus on understanding tasks of interest, matching these tasks to machine learning tools, and assessing the quality of the output. In subsequent courses, you will delve into the components of this black box by examining models and algorithms. Together, these pieces form the machine learning pipeline, which you will use in developing intelligent applications. Learning Outcomes: By the end of this course, you will be able to: -Identify potential applications of machine learning in practice. -Describe the core differences in analyses enabled by regression, classification, and clustering. -Select the appropriate machine learning task for a potential application. -Apply regression, classification, clustering, retrieval, recommender systems, and deep learning. -Represent your data as features to serve as input to machine learning models. -Assess the model quality in terms of relevant error metrics for each task. -Utilize a dataset to fit a model to analyze new data. -Build an end-to-end application that uses machine learning at its core. -Implement these techniques in Python....
Curso2

Machine Learning: Regression

4.8
3,899 classificações
756 avaliações
Case Study - Predicting Housing Prices In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression. In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets. Learning Outcomes: By the end of this course, you will be able to: -Describe the input and output of a regression model. -Compare and contrast bias and variance when modeling data. -Estimate model parameters using optimization algorithms. -Tune parameters with cross validation. -Analyze the performance of the model. -Describe the notion of sparsity and how LASSO leads to sparse solutions. -Deploy methods to select between models. -Exploit the model to form predictions. -Build a regression model to predict prices using a housing dataset. -Implement these techniques in Python....
Curso3

Machine Learning: Classification

4.7
2,510 classificações
428 avaliações
Case Studies: Analyzing Sentiment & Loan Default Prediction In our case study on analyzing sentiment, you will create models that predict a class (positive/negative sentiment) from input features (text of the reviews, user profile information,...). In our second case study for this course, loan default prediction, you will tackle financial data, and predict when a loan is likely to be risky or safe for the bank. These tasks are an examples of classification, one of the most widely used areas of machine learning, with a broad array of applications, including ad targeting, spam detection, medical diagnosis and image classification. In this course, you will create classifiers that provide state-of-the-art performance on a variety of tasks. You will become familiar with the most successful techniques, which are most widely used in practice, including logistic regression, decision trees and boosting. In addition, you will be able to design and implement the underlying algorithms that can learn these models at scale, using stochastic gradient ascent. You will implement these technique on real-world, large-scale machine learning tasks. You will also address significant tasks you will face in real-world applications of ML, including handling missing data and measuring precision and recall to evaluate a classifier. This course is hands-on, action-packed, and full of visualizations and illustrations of how these techniques will behave on real data. We've also included optional content in every module, covering advanced topics for those who want to go even deeper! Learning Objectives: By the end of this course, you will be able to: -Describe the input and output of a classification model. -Tackle both binary and multiclass classification problems. -Implement a logistic regression model for large-scale classification. -Create a non-linear model using decision trees. -Improve the performance of any model using boosting. -Scale your methods with stochastic gradient ascent. -Describe the underlying decision boundaries. -Build a classification model to predict sentiment in a product review dataset. -Analyze financial data to predict loan defaults. -Use techniques for handling missing data. -Evaluate your models using precision-recall metrics. -Implement these techniques in Python (or in the language of your choice, though Python is highly recommended)....
Curso4

Machine Learning: Clustering & Retrieval

4.6
1,504 classificações
268 avaliações
Case Studies: Finding Similar Documents A reader is interested in a specific news article and you want to find similar articles to recommend. What is the right notion of similarity? Moreover, what if there are millions of other documents? Each time you want to a retrieve a new document, do you need to search through all other documents? How do you group similar documents together? How do you discover new, emerging topics that the documents cover? In this third case study, finding similar documents, you will examine similarity-based algorithms for retrieval. In this course, you will also examine structured representations for describing the documents in the corpus, including clustering and mixed membership models, such as latent Dirichlet allocation (LDA). You will implement expectation maximization (EM) to learn the document clusterings, and see how to scale the methods using MapReduce. Learning Outcomes: By the end of this course, you will be able to: -Create a document retrieval system using k-nearest neighbors. -Identify various similarity metrics for text data. -Reduce computations in k-nearest neighbor search by using KD-trees. -Produce approximate nearest neighbors using locality sensitive hashing. -Compare and contrast supervised and unsupervised learning tasks. -Cluster documents by topic using k-means. -Describe how to parallelize k-means using MapReduce. -Examine probabilistic clustering approaches using mixtures models. -Fit a mixture of Gaussian model using expectation maximization (EM). -Perform mixed membership modeling using latent Dirichlet allocation (LDA). -Describe the steps of a Gibbs sampler and how to use its output to draw inferences. -Compare and contrast initialization techniques for non-convex optimization objectives. -Implement these techniques in Python....

Instrutores

Avatar

Carlos Guestrin

Amazon Professor of Machine Learning
Computer Science and Engineering
Avatar

Emily Fox

Amazon Professor of Machine Learning
Statistics

Parceiros do setor

Industry Partner Logo #0

Sobre University of Washington

Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world....

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • Esta Especialização não carrega créditos universitários, mas algumas universidades podem optar por aceitar certificados de especialização como crédito. Verifique com sua instituição para saber mais.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in about 8 months.

  • Each course in the Specialization is offered on a regular schedule, with sessions starting about once per month. If you don't complete a course on the first try, you can easily transfer to the next session, and your completed work and grades will carry over.

  • You should have some experience with computer programming; most assignments in this Specialization will use the Python programming language. This Specialization is designed specifically for scientists and software developers who want to expand their skills into data science and machine learning, but is appropriate for anyone with basic math and programming skills and an interest in deriving intelligence from data.

  • We recommend taking the courses in the order presented, as each subsequent course will build on material from previous courses.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • You will be able to use machine learning techniques to solve complex real-world problems, by identifying the right method for your task, implementing an algorithm, assessing and improving the algorithm’s performance, and deploying your solution as a service.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.