Sobre este Programa de cursos integrados
6,454 visualizações recentes

Cursos 100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível avançado

Aprox. 2 meses para completar

12 horas/semana sugeridas

Inglês

Legendas: Inglês

Habilidades que você terá

Data ScienceInformation EngineeringArtificial Intelligence (AI)Machine LearningPython Programming

Cursos 100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível avançado

Aprox. 2 meses para completar

12 horas/semana sugeridas

Inglês

Legendas: Inglês

Como funciona o programa de cursos integrados

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 6 cursos

Curso1

AI Workflow: Business Priorities and Data Ingestion

Curso2

AI Workflow: Data Analysis and Hypothesis Testing

Curso3

AI Workflow: Feature Engineering and Bias Detection

4.8
5 classificações
Curso4

AI Workflow: Machine Learning, Visual Recognition and NLP

4.7
6 classificações
1 avaliações

Instrutores

Avatar

Mark J Grover

Digital Content Delivery Lead
IBM Data & AI Learning
Avatar

Ray Lopez, Ph.D.

Data Science Curriculum Leader
IBM Data & Artificial Intelligence

Sobre IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • The entire specialization will require 35-40 hours of study.  Each of the 6 courses requires 4 to 9 hours of study each.

  • It is assumed you have a solid understanding of the following topics prior to starting this course: Fundamental understanding of Linear Algebra; Understanding of sampling, probability theory, and probability distributions; Knowledge of descriptive and inferential statistical concepts; General understanding of machine learning techniques and best practices; Practiced understanding of Python and the packages commonly used in data science: NumPy, Pandas, matplotlib, scikit-learn; Familiarity with IBM Watson Studio; Familiarity with the design thinking process. If you are unsure, Course 1 includes a Readiness Exam you can take to see if you are prepared.

  • You are STRONGLY encouraged to complete these courses in order as they are not individual independent courses, but part of a workflow where each course builds on the previous ones.  

  • Sorry, you will not.

  • By the end of this specialization you will be able to:

    1. Build an end to end AI solution. 

    2. Leverage Design Thinking as a framework to work through the translation of business goals into AI technical implementations.

    3. Bring together different capabilities such as Machine Learning, and specialized AI use cases.

    4. Leverage Python as the tool of choice for building AI models, while integrating IBM technologies to facilitate enterprise tasks such as cross-collaboration for the creation of machine learning models, employing out-of-the-box trained models for natural language processing and visual recognition, and deploying models to production.  

  • This specialization targets existing data science practitioners that have expertise building machine learning models, who want to deepen their skills on building and deploying AI in large enterprises. If you are an aspiring Data Scientist, this specialization is NOT for you as you need real world expertise to benefit from the content of these courses.

  • No. Most of the exercises may be completed with open source tools running on your personal computer. However, the exercises are designed with an enterprise focus and are intended to be run in an enterprise environment that allows for easier sharing and collaboration. Some of the exercises in this specialization are heavily focused on deployment and testing of machine learning models and use the IBM Watson tooling found on the IBM Cloud.

  • Yes. All IBM Cloud Data and AI services are based upon open source technologies.

  • The exercises in the course may be completed by anyone using the IBM Cloud "Lite" plan, which is free for use.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.