Sobre este Programa de cursos integrados
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível avançado

Nível avançado

Horas para completar

Aprox. 2 meses para completar

11 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Vietnamita, Francês...

Habilidades que você terá

Data ScienceInternet Of Things (IOT)Deep LearningApache Spark
cursos 100% online

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível

Cronograma flexível

Definição e manutenção de prazos flexíveis.
Nível avançado

Nível avançado

Horas para completar

Aprox. 2 meses para completar

11 horas/semana sugeridas
Idiomas disponíveis

Inglês

Legendas: Inglês, Vietnamita, Francês...

Como o Programa de cursos integrados funciona

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 4 cursos

Curso1

Fundamentals of Scalable Data Science

4.4
182 classificações
42 avaliações
The value of IoT can be found within the analysis of data gathered from the system under observation, where insights gained can have direct impact on business and operational transformation. Through analysis data correlation, patterns, trends, and other insight are discovered. Insight leads to better communication between stakeholders, or actionable insights, which can be used to raise alerts or send commands, back to IoT devices. With a focus on the topic of Exploratory Data Analysis, the course provides an in-depth look at mathematical foundations of basic statistical measures, and how they can be used in conjunction with advanced charting libraries to make use of the world’s best pattern recognition system – the human brain. Learn how to work with the data, and depict it in ways that support visual inspections, and derive to inferences about the data. Identify interesting characteristics, patterns, trends, deviations or inconsistencies, and potential outliers. The goal is that you are able to implement end-to-end analytic workflows at scale, from data acquisition to actionable insights. Through a series of lectures and exercises students get the needed skills to perform such analysis on any data, although we clearly focus on IoT Sensor Event Data. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging. After completing this course, you will be able to: • Describe how basic statistical measures, are used to reveal patterns within the data • Recognize data characteristics, patterns, trends, deviations or inconsistencies, and potential outliers. • Identify useful techniques for working with big data such as dimension reduction and feature selection methods • Use advanced tools and charting libraries to: o Automatically store data from IoT device(s) o improve efficiency of analysis of big-data with partitioning and parallel analysis o Visualize the data in an number of 2D and 3D formats (Box Plot, Run Chart, Scatter Plot, Pareto Chart, and Multidimensional Scaling) For successful completion of the course, the following prerequisites are recommended: • Basic programming skills in any programming language (python preferred) • A good grasp of basic algebra and algebraic equations • (optional) “A developer's guide to the Internet of Things (IoT)” - a Coursera course • Basic SQL is a plus In order to complete this course, the following technologies will be used: (These technologies are introduced in the course as necessary so no previous knowledge is required.) • IBM Watson IoT Platform (MQTT Message Broker as a Service, Device Management and Operational Rule Engine) • IBM Bluemix (Open Standard Platform Cloud) • Node-Red • Cloudant NoSQL (Apache CouchDB) • ApacheSpark • Languages: R, Scala and Python (focus on Python) This course takes four weeks, 4-6h per week...
Curso2

Advanced Machine Learning and Signal Processing

4.8
69 classificações
12 avaliações
>>> By enrolling in this course you agree to the End User License Agreement as set out in the FAQ. Once enrolled you can access the license in the Resources area <<< This course, Advanced Machine Learning and Signal Processing, is part of the IBM Advanced Data Science Specialization which IBM is currently creating and gives you easy access to the invaluable insights into Supervised and Unsupervised Machine Learning Models used by experts in many field relevant disciplines. We’ll learn about the fundamentals of Linear Algebra to understand how machine learning modes work. Then we introduce the most popular Machine Learning Frameworks for python Scikit-Learn and SparkML. SparkML is making up the greatest portion of this course since scalability is key to address performance bottlenecks. We learn how to tune the models in parallel by evaluating hundreds of different parameter-combinations in parallel. We’ll continuously use a real-life example from IoT (Internet of Things), for exemplifying the different algorithms. For passing the course you are even required to create your own vibration sensor data using the accelerometer sensors in your smartphone. So you are actually working on a self-created, real dataset throughout the course. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging....
Curso3

Applied AI with DeepLearning

4.4
172 classificações
36 avaliações
>>> By enrolling in this course you agree to the End User License Agreement as set out in the FAQ. Once enrolled you can access the license in the Resources area <<< This course, Applied Artificial Intelligence with DeepLearning, is part of the IBM Advanced Data Science Certificate which IBM is currently creating and gives you easy access to the invaluable insights into Deep Learning models used by experts in Natural Language Processing, Computer Vision, Time Series Analysis, and many other disciplines. We’ll learn about the fundamentals of Linear Algebra and Neural Networks. Then we introduce the most popular DeepLearning Frameworks like Keras, TensorFlow, PyTorch, DeepLearning4J and Apache SystemML. Keras and TensorFlow are making up the greatest portion of this course. We learn about Anomaly Detection, Time Series Forecasting, Image Recognition and Natural Language Processing by building up models using Keras one real-life examples from IoT (Internet of Things), Financial Marked Data, Literature or Image Databases. Finally, we learn how to scale those artificial brains using Kubernetes, Apache Spark and GPUs. IMPORTANT: THIS COURSE ALONE IS NOT SUFFICIENT TO OBTAIN THE "IBM Watson IoT Certified Data Scientist certificate". You need to take three other courses where two of them are currently built. The Specialization will be ready late spring, early summer 2018 Using these approaches, no matter what your skill levels in topics you would like to master, you can change your thinking and change your life. If you’re already an expert, this peep under the mental hood will give your ideas for turbocharging successful creation and deployment of DeepLearning models. If you’re struggling, you’ll see a structured treasure trove of practical techniques that walk you through what you need to do to get on track. If you’ve ever wanted to become better at anything, this course will help serve as your guide. Prerequisites: Some coding skills are necessary. Preferably python, but any other programming language will do fine. Also some basic understanding of math (linear algebra) is a plus, but we will cover that part in the first week as well. If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge. To find out more about IBM digital badges follow the link ibm.biz/badging....
Curso4

Advanced Data Science Capstone

4.9
12 classificações
4 avaliações
This project completer has proven a deep understanding on massive parallel data processing, data exploration and visualization, advanced machine learning and deep learning and how to apply his knowledge in a real-world practical use case where he justifies architectural decisions, proves understanding the characteristics of different algorithms, frameworks and technologies and how they impact model performance and scalability. ...

Instrutores

Avatar

Niketan Pansare

Senior Software Engineer
IBM Research
Avatar

Tom Hanlon

Training Director
Skymind
Avatar

Nikolay Manchev

Data Scientist
IBM EMEA Data Science
Avatar

Romeo Kienzler

Chief Data Scientist, Course Lead
IBM Watson IoT
Avatar

Max Pumperla

Deep Learning Engineer
Avatar

Ilja Rasin

Data Scientist
IBM Watson Health

Sobre IBM

IBM offers a wide range of technology and consulting services; a broad portfolio of middleware for collaboration, predictive analytics, software development and systems management; and the world's most advanced servers and supercomputers. Utilizing its business consulting, technology and R&D expertise, IBM helps clients become "smarter" as the planet becomes more digitally interconnected. IBM invests more than $6 billion a year in R&D, just completing its 21st year of patent leadership. IBM Research has received recognition beyond any commercial technology research organization and is home to 5 Nobel Laureates, 9 US National Medals of Technology, 5 US National Medals of Science, 6 Turing Awards, and 10 Inductees in US Inventors Hall of Fame....

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • Esta Especialização não carrega créditos universitários, mas algumas universidades podem optar por aceitar certificados de especialização como crédito. Verifique com sua instituição para saber mais.

  • 16 weeks

  • Fundamentals in python programming is recommended. Basic understanding of machine learning is a plus.

  • Yes, please take the fundamentals course first

  • You will be able to perform as a Lead Data Scientist or Architect

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.