Statistical Data Visualization with Seaborn From UST

4.6
estrelas
152 classificações
oferecido por
Coursera Project Network
6.932 já se inscreveram
Neste Projeto guiado gratuito, você irá:

Produce and customize various chart types with Seaborn

Apply feature selection and feature extraction methods with scikit-learn

Build a boosted decision tree classifier with XGBoost

Mostre essa experiência prática em uma entrevista

Clock1.5 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

Welcome to this Guided Project on Statistical Data Visualization with Seaborn, From UST. For more than 20 years, UST has worked side by side with the world’s best companies to make a real impact through transformation. Powered by technology, inspired by people and led by their purpose, they partner with clients from design to operation. With this Guided Project from UST, you can quickly build in-demand job skills and expand your career opportunities in the Data Science field. Producing visualizations is an important first step in exploring and analyzing real-world data sets. As such, visualization is an indispensable method in any data scientist's toolbox as well as a powerful tool to identify problems in analyses and for illustrating results. In this project, we will employ the statistical data visualization library, Seaborn, to discover and explore the relationships in the Breast Cancer Wisconsin (Diagnostic) data set. Using the exploratory data analysis (EDA) results from the Breast Cancer Diagnosis – Exploratory Data Analysis Guided Project, you will practice dropping correlated features, implement feature selection and utilize several feature extraction methods including; feature selection with correlation, univariate feature selection, recursive feature elimination, principal component analysis (PCA) and tree based feature selection methods. Lastly, we will build a boosted decision tree classifier with XGBoost to classify tumors as either malignant or benign. By the end of this Guided Project, you should feel more confident about working with data, creating visualizations for data analysis, and have practiced several methods which apply to a Data Scientist’s role. Let's get started!

Requisitos

Some experience in the basic programming commands of Python and a general understanding of machine learning.

Habilidades que você desenvolverá

  • Data Science
  • Machine Learning
  • Python Programming
  • Seaborn
  • Data Visualization (DataViz)

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Project Overview

  2. Importing Libraries and Data

  3. Dropping Correlated Columns from Feature List

  4. Classification using XGBoost (minimal feature selection)

  5. Univariate Feature Selection

  6. Recursive Feature Elimination with Cross-Validation

  7. Plot CV Scores vs Number of Features Selected

  8. Feature Extraction using Principal Component Analysis

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do STATISTICAL DATA VISUALIZATION WITH SEABORN FROM UST

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.