Hyperparameter Tuning with Keras Tuner

4.7
estrelas
36 classificações
oferecido por
Coursera Project Network
Neste Projeto guiado gratuito, você irá:

Create and run hyperparameter tuning experiments using Keras Tuner

Create and use Custom Keras Tuners

Mostre essa experiência prática em uma entrevista

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 2-hour long guided project, we will use Keras Tuner to find optimal hyperparamters for a Keras model. Keras Tuner is an open source package for Keras which can help machine learning practitioners automate Hyperparameter tuning tasks for their Keras models. The concepts learned in this project will apply across a variety of model architectures and problem scenarios. Please note that we are going to learn to use Keras Tuner for hyperparameter tuning, and are not going to implement the tuning algorithms ourselves. At the time of recording this project, Keras Tuner has a few tuning algorithms including Random Search, Bayesian Optimization and HyperBand. In order to complete this project successfully, you will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, and optimization algorithms like gradient descent but want to understand how to use Keras Tuner to start optimizing hyperparameters for training their Keras models. You should also be familiar with the Keras API. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requisitos

Prior programming experience in Python. Conceptual understanding of Neural Networks. Prior experience with TensorFlow and Keras.

Habilidades que você desenvolverá

  • Deep Learning
  • Machine Learning
  • Hyperparameter Optimization
  • hyperparameter tuning
  • keras

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introduction

  2. Installing Keras Tuner and Downloading the Data

  3. Creating the Model

  4. Hyperparameters

  5. Keras Tuner

  6. Training Results

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.