Chevron Left
Voltar para Image Noise Reduction with Auto-encoders using TensorFlow

Comentários e feedback de alunos de Image Noise Reduction with Auto-encoders using TensorFlow da instituição Coursera Project Network

4.7
estrelas
109 classificações

Sobre o curso

In this 2-hour long project-based course, you will learn the basics of image noise reduction with auto-encoders. Auto-encoding is an algorithm to help reduce dimensionality of data with the help of neural networks. It can be used for lossy data compression where the compression is dependent on the given data. This algorithm to reduce dimensionality of data as learned from the data can also be used for reducing noise in data. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Tensorflow pre-installed. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

NL

7 de abr de 2020

Really great learning for beginners. Through project learning it gives very good confidence. But rhyme desktop should be available until completion of project.

NS

15 de ago de 2020

nice presentation skill, it is helpful for me to noise reduction and image processing

Filtrar por:

1 — 15 de 15 Avaliações para o Image Noise Reduction with Auto-encoders using TensorFlow

por Narendra L L

8 de abr de 2020

por Ravi P B

17 de abr de 2020

por noman s

16 de ago de 2020

por Kolawole E O

11 de out de 2020

por SUGUNA M

19 de nov de 2020

por nilesh n

28 de mar de 2020

por XAVIER S M

2 de jun de 2020

por SUMIT Y

9 de jul de 2020

por Kamlesh C

7 de ago de 2020

por sarithanakkala

23 de jun de 2020

por p s

23 de jun de 2020

por tale p

17 de jun de 2020

por Rohit M

13 de jun de 2020

por NAIDU P S A

27 de jun de 2020

por Jorge G

25 de fev de 2021