Image Compression and Generation using Variational Autoencoders in Python

4.7
estrelas
68 classificações
oferecido por
Coursera Project Network
3.156 já se inscreveram
Neste projeto guiado, você irá:

How to preprocess and prepare data for vision tasks using PyTorch

What a variational autoencoder is and how to train one

How to compress, reconstruct, and generate new images using a generative model

Clock90 minutes
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project, you will be introduced to the Variational Autoencoder. We will discuss some basic theory behind this model, and move on to creating a machine learning project based on this architecture. Our data comprises 60.000 characters from a dataset of fonts. We will train a variational autoencoder that will be capable of compressing this character font data from 2500 dimensions down to 32 dimensions. This same model will be able to then reconstruct its original input with high fidelity. The true advantage of the variational autoencoder is its ability to create new outputs that come from distributions that closely follow its training data: we can output characters in brand new fonts. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Image Compression
  • Machine Learning
  • Vision

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. An introduction to the variational autoencoder and our project

  2. Dataset visualization and preprocessing

  3. Dataset split into training and validation sets

  4. U​se data loaders to handle memory overload

  5. Create VAE architecture

  6. Create training loop for VAE

  7. R​esults of our model and short introduction to other potential projects using a VAE

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do IMAGE COMPRESSION AND GENERATION USING VARIATIONAL AUTOENCODERS IN PYTHON

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.