Generate Synthetic Images with DCGANs in Keras

4.5
estrelas
208 classificações
oferecido por
Coursera Project Network
6,306 já se inscreveram
Neste projeto guiado, você irá:

Understand Deep Convolutional Generative Adversarial Networks (DCGANs and GANs)

Design and train DCGANs using the Keras API in Python

Clock1.5 hours
AdvancedAvançado
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this hands-on project, you will learn about Generative Adversarial Networks (GANs) and you will build and train a Deep Convolutional GAN (DCGAN) with Keras to generate images of fashionable clothes. We will be using the Keras Sequential API with Tensorflow 2 as the backend. In our GAN setup, we want to be able to sample from a complex, high-dimensional training distribution of the Fashion MNIST images. However, there is no direct way to sample from this distribution. The solution is to sample from a simpler distribution, such as Gaussian noise. We want the model to use the power of neural networks to learn a transformation from the simple distribution directly to the training distribution that we care about. The GAN consists of two adversarial players: a discriminator and a generator. We’re going to train the two players jointly in a minimax game theoretic formulation. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and Keras pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

Deep LearningMachine LearningTensorflowComputer Visionkeras

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Project Overview and Import Libraries

  2. Load and Preprocess the Data

  3. Create Batches of Training Data

  4. Build the Generator Network for DCGAN

  5. Build the Discriminator Network for DCGAN

  6. Compile the Deep Convolutional Generative Adversarial Network (DCGAN)

  7. Define the Training Procedure

  8. Train DCGAN

  9. Generate Synthetic Images with DCGAN

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do GENERATE SYNTHETIC IMAGES WITH DCGANS IN KERAS

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.