Chevron Left
Voltar para Dimensionality Reduction using an Autoencoder in Python

Comentários e feedback de alunos de Dimensionality Reduction using an Autoencoder in Python da instituição Coursera Project Network

4.6
estrelas
94 classificações

Sobre o curso

In this 1-hour long project, you will learn how to generate your own high-dimensional dummy dataset. You will then learn how to preprocess it effectively before training a baseline PCA model. You will learn the theory behind the autoencoder, and how to train one in scikit-learn. You will also learn how to extract the encoder portion of it to reduce dimensionality of your input data. In the course of this project, you will also be exposed to some basic clustering strength metrics. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

UI

3 de mai de 2020

Very practical and useful introductory course. Looking for the next courses :)

RR

12 de jun de 2020

I really enjoyed this course. Thank you very much for the valuable teaching.

Filtrar por:

1 — 16 de 16 Avaliações para o Dimensionality Reduction using an Autoencoder in Python

por Abhishek P G

15 de jun de 2020

por Felix H

30 de jun de 2020

por Ulvi I

4 de mai de 2020

por Ramya G R

13 de jun de 2020

por Mayank S

4 de mai de 2020

por Oscar A C B

12 de jun de 2020

por chandrasekhar u

6 de mai de 2020

por Gangone R

2 de jul de 2020

por Doss D

2 de jul de 2020

por Sarangan R

10 de jan de 2021

por Joerg A

19 de mai de 2020

por M H

17 de set de 2020

por Juan C V

5 de jul de 2020

por Sujeet B

7 de mai de 2020

por Jorge G

25 de fev de 2021

por Simon S R

29 de ago de 2020