Chevron Left
Voltar para Analyze Box Office Data with Seaborn and Python

Comentários e feedback de alunos de Analyze Box Office Data with Seaborn and Python da instituição Coursera Project Network

4.5
estrelas
174 classificações

Sobre o curso

Welcome to this project-based course on Analyzing Box Office Data with Seaborn and Python. In this course, you will be working with the The Movie Database (TMDB) Box Office Prediction data set. The motion picture industry is raking in more revenue than ever with its expansive growth the world over. Can we build models to accurately predict movie revenue? Could the results from these models be used to further increase revenue? We try to answer these questions by way of exploratory data analysis (EDA) in this project and the next. The statistical data visualization libraries Seaborn and Plotly will be our workhorses to generate interactive, publication-quality graphs. By the end of this course, you will be able to produce data visualizations in Python with Seaborn, and apply graphical techniques used in exploratory data analysis (EDA). This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

AD

5 de jun de 2020

Everything taught was understood. Well explained. Looking for more projects from the instructor! Thank you! It was a great experience and I learnt a lot !

MA

22 de dez de 2020

Mr. Kekre was elaborative, clear, neat, and direct in illustrating the project, this is not overpraising; I would like to attend more projects for him.

Filtrar por:

1 — 25 de 27 Avaliações para o Analyze Box Office Data with Seaborn and Python

por Mario C M

9 de jun de 2020

por Ritesh S

26 de mai de 2020

por Kalaiarasi N

3 de jun de 2020

por Aparajita D

6 de jun de 2020

por M B A

23 de dez de 2020

por Raghav G

30 de jul de 2020

por Nihar S

11 de mai de 2020

por Deleted A

13 de mai de 2020

por daniel s

30 de mai de 2020

por Veeramanickam M

23 de abr de 2020

por Joey L

21 de mai de 2020

por HAY a

20 de ago de 2020

por Archit M

22 de jun de 2020

por Ma. A S

3 de out de 2020

por Gregory G J

9 de jan de 2021

por cristhian e c t

4 de jan de 2021

por tale p

17 de jun de 2020

por Anantharaman K

12 de jul de 2020

por Ananna B

21 de mai de 2020

por Rohan L

4 de mai de 2020

por Bahar R

28 de mai de 2020

por Manzil-e A K

26 de jul de 2020

por Muhammad A B

12 de ago de 2020

por Jorge G

25 de fev de 2021

por Amal N L

23 de jul de 2020