Aerial Image Segmentation with PyTorch

oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Create train function and evaluator for training loop

Use U-Net architecture for segmentation

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 2-hour project-based course, you will be able to : - Understand the Massachusetts Roads Segmentation Dataset and you will write a custom dataset class for Image-mask dataset. Additionally, you will apply segmentation domain augmentations to augment images as well as its masks. For image-mask augmentation you will use albumentation library. You will plot the image-Mask pair. - Load a pretrained state of the art convolutional neural network for segmentation problem(for e.g, Unet) using segmentation model pytorch library. - Create train function and evaluator function which will helpful to write training loop. Moreover, you will use training loop to train the model. - Finally, we will use best trained segementation model for inference.

Habilidades que você desenvolverá

  • Convolutional Neural Network
  • Python Programming
  • Autoencoder
  • pytorch

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Setting up colab runtime

  2. Setup Configurations

  3. Augmentation Functions

  4. Create Custom Dataset

  5. Load dataset into batches

  6. Create Segmentation Model

  7. Create Train and Valid function

  8. Training Loop

  9. Inference

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.