Chevron Left
Voltar para Vector Calculus for Engineers

Comentários e feedback de alunos de Vector Calculus for Engineers da instituição Universidade de Ciência e Tecnologia de Hong Kong

4.8
estrelas
1,251 classificações

Sobre o curso

This course covers both the basic theory and applications of Vector Calculus. In the first week we learn about scalar and vector fields, in the second week about differentiating fields, in the third week about multidimensional integration and curvilinear coordinate systems. The fourth week covers line and surface integrals, and the fifth week covers the fundamental theorems of vector calculus, including the gradient theorem, the divergence theorem and Stokes’ theorem. These theorems are needed in core engineering subjects such as Electromagnetism and Fluid Mechanics. Instead of Vector Calculus, some universities might call this course Multivariable or Multivariate Calculus or Calculus 3. Two semesters of single variable calculus (differentiation and integration) are a prerequisite. The course contains 53 short lecture videos, with a few problems to solve following each lecture. And after each substantial topic, there is a short practice quiz. Solutions to the problems and practice quizzes can be found in instructor-provided lecture notes. There are a total of five weeks to the course, and at the end of each week there is an assessed quiz. Download the lecture notes: http://www.math.ust.hk/~machas/vector-calculus-for-engineers.pdf Watch the promotional video: https://youtu.be/qUseabHb6Vk...

Melhores avaliações

DB

29 de ago de 2021

Es un curso muy bueno para afianzar la materia de calculo en varias variables, no es complicado y no tiene un nivel muy alto pero es útil para repasar la teoría y ver algunas aplicaciones útiles.

DK

22 de mai de 2020

i have completed Three courses of Professor Jeffrey. I'm so happy that i learnt a lot from him. Thanks to our professor Jeffrey and thanks to The Hong Kong University of Science and Technology.

Filtrar por:

326 — 335 de 335 Avaliações para o Vector Calculus for Engineers

por Carlos M G

16 de mar de 2021

por Ogunpola J G

12 de jul de 2020

por Shrungi

18 de abr de 2020

por Nwosu C F

1 de jul de 2020

por Ogundowo M O

3 de ago de 2020

por GANDHAM S H

15 de fev de 2022

por Kristiyan P

4 de abr de 2021

por Steve C

20 de fev de 2020

por TATA R C 2

18 de jul de 2021

por Odili A K

9 de ago de 2020