Who is this class for: This course is aimed at anyone who wants to improve their statistical inferences, either because you are preparing to do empirical research for the first time, or because you were never taught these important statistical concepts in a clear and accessible manner in the past. I didn't know most of the things you will learn in this course until well after I got my PhD, and I've tried to create the course I would have liked to have gotten when I started to do research. You should have some basic knowledge about calculating descriptive statistics, and how to perform t-tests, correlations, and ANOVA's (If you don't have this knowledge, try https://www.coursera.org/learn/basic-statistics first). We will use R in many of the assignments, but you don't need any previous knowledge of R - we will mainly use it as a fancy calculator.


Created by:  Eindhoven University of Technology

  • Daniel Lakens

    Taught by:  Daniel Lakens, Associate Professor

    Department of Human-Technology Interaction
LevelIntermediate
Commitment7 weeks of study, 3 hours a week
Language
English, Subtitles: Chinese (Simplified)
How To PassPass all graded assignments to complete the course.
User Ratings
4.9 stars
Average User Rating 4.9See what learners said
Syllabus

FAQs
How It Works
课程作业
课程作业

每门课程都像是一本互动的教科书,具有预先录制的视频、测验和项目。

来自同学的帮助
来自同学的帮助

与其他成千上万的学生相联系,对想法进行辩论,讨论课程材料,并寻求帮助来掌握概念。

证书
证书

获得正式认证的作业,并与朋友、同事和雇主分享您的成功。

Creators
Eindhoven University of Technology
Eindhoven University of Technology (TU/e) is a research-driven, design-oriented university of technology with a strong international focus. The university was founded in 1956, and has around 8,500 students and 3,000 staff. TU/e has defined strategic areas focusing on the societal challenges in Energy, Health and Smart Mobility. The Brainport Eindhoven region is one of world’s smartest; it won the title Intelligent Community of the Year 2011.
Ratings and Reviews
Rated 4.9 out of 5 of 160 ratings

Enjoyable, useful, necessary.

Concepts are explained in an easy-to-understand way with a good use of analogies. Homework assignments are straightforward and useful. I like the way he teaches using simulations. He encourages students to play around with his simulations to discover how changes in the simulations' inputs affect the results.

a very thoughtful introduction to the different approaches of statistical reasoning

Dr. Lakens is a very good instructor. He speaks cleary and he is extremaly focused in each subject he's teaching, Unfortunatelly, he keeps making some jargons in somehow he understand frequentist statistics. I'll list some of mistakes:

1. The p-value is a probability computed assuming *the null hypothesis is true*, that the test statistic would take a value as extreme or more extreme than that actually observed. When he cite "assuming null effect", he merge "effect size" and "NHSTs". This becomes even worst when we use NHST to analyze variable distributions where, by default, we don't have an "effect", but an "assumption". This is valid for all normality test, such anderson-darling or kolgomorov-smirnoff.

2. Furthermore considering the way he decided to approach to null hypothesis, any statistician knows that a null is always wrong and it is the why we dont accept the null. During all the time, in his videos, he insists to use "accepting the null". When he does that, is like a broken guitar in a symphony. It disturbs the video.

3. The control of type II error always involves some sample-size calculations wether we want to acchieve, at minimium, 80% of power. He simply attached a R script to run and he didnt't mention how we can verify if some study has an effect or not. Point and clicking button, in my opinion, is not adequate when we are in a statistical class where the goal is to improve our inferencial skills.

4. Some of quizzes and evaluations have items where options are not presented in a properly way. The subject of each response vary substantly.

I trully hope this feedback will be read in an academic way, which was the intention.