Chevron Left
Voltar para Sample-based Learning Methods

Comentários e feedback de alunos de Sample-based Learning Methods da instituição Universidade de AlbertaUniversidade de Alberta

1,136 classificações

Sobre o curso

In this course, you will learn about several algorithms that can learn near optimal policies based on trial and error interaction with the environment---learning from the agent’s own experience. Learning from actual experience is striking because it requires no prior knowledge of the environment’s dynamics, yet can still attain optimal behavior. We will cover intuitively simple but powerful Monte Carlo methods, and temporal difference learning methods including Q-learning. We will wrap up this course investigating how we can get the best of both worlds: algorithms that can combine model-based planning (similar to dynamic programming) and temporal difference updates to radically accelerate learning. By the end of this course you will be able to: - Understand Temporal-Difference learning and Monte Carlo as two strategies for estimating value functions from sampled experience - Understand the importance of exploration, when using sampled experience rather than dynamic programming sweeps within a model - Understand the connections between Monte Carlo and Dynamic Programming and TD. - Implement and apply the TD algorithm, for estimating value functions - Implement and apply Expected Sarsa and Q-learning (two TD methods for control) - Understand the difference between on-policy and off-policy control - Understand planning with simulated experience (as opposed to classic planning strategies) - Implement a model-based approach to RL, called Dyna, which uses simulated experience - Conduct an empirical study to see the improvements in sample efficiency when using Dyna...

Melhores avaliações


14 de fev de 2021

Excellent course that naturally extends the first specialization course. The application examples in programming are very good and I loved how RL gets closer and closer to how a living being thinks.


11 de ago de 2020

Great course, giving it 5 stars though it deserves both because the assignments have some serious issues that shouldn't actually be a matter. All the other parts are amazing though. Good job

Filtrar por:

1 — 25 de 221 Avaliações para o Sample-based Learning Methods

por JD

22 de set de 2019

por Kaiwen Y

2 de out de 2019

por hope

25 de jan de 2020

por Juan C E

7 de mar de 2020

por Maxim V

12 de jan de 2020

por Bernard C

22 de mar de 2020

por Rishi R

3 de ago de 2020

por Mukund C

17 de mar de 2020

por Kinal M

10 de jan de 2020

por Kyle A

3 de out de 2019

por Ivan S F

29 de set de 2019

por Manuel B

28 de nov de 2019

por Amit J

27 de fev de 2021

por Manuel V d S

4 de out de 2019

por Andrew G

24 de dez de 2019

por Maximiliano B

23 de fev de 2020

por Jonathan B

9 de mai de 2020

por Steven W

11 de mai de 2021

por Sandesh J

8 de jun de 2020

por César S

9 de jul de 2021

por Yover M C C

22 de abr de 2020

por Alberto H

28 de out de 2019

por Karol P

9 de abr de 2021

por Pars V

5 de jan de 2020

por Surya K

12 de abr de 2020