Voltar para Machine Learning: Regression

estrelas

5,311 classificações

•

992 avaliações

Case Study - Predicting Housing Prices
In our first case study, predicting house prices, you will create models that predict a continuous value (price) from input features (square footage, number of bedrooms and bathrooms,...). This is just one of the many places where regression can be applied. Other applications range from predicting health outcomes in medicine, stock prices in finance, and power usage in high-performance computing, to analyzing which regulators are important for gene expression.
In this course, you will explore regularized linear regression models for the task of prediction and feature selection. You will be able to handle very large sets of features and select between models of various complexity. You will also analyze the impact of aspects of your data -- such as outliers -- on your selected models and predictions. To fit these models, you will implement optimization algorithms that scale to large datasets.
Learning Outcomes: By the end of this course, you will be able to:
-Describe the input and output of a regression model.
-Compare and contrast bias and variance when modeling data.
-Estimate model parameters using optimization algorithms.
-Tune parameters with cross validation.
-Analyze the performance of the model.
-Describe the notion of sparsity and how LASSO leads to sparse solutions.
-Deploy methods to select between models.
-Exploit the model to form predictions.
-Build a regression model to predict prices using a housing dataset.
-Implement these techniques in Python....

PD

16 de Mar de 2016

I really enjoyed all the concepts and implementations I did along this course....except during the Lasso module. I found this module harder than the others but very interesting as well. Great course!

KM

4 de Mai de 2020

Excellent professor. Fundamentals and math are provided as well. Very good notebooks for the assignments...it’s just that turicreate library that caused some issues, however the course deserves a 5/5

Filtrar por:

por Robert S

•29 de Nov de 2016

Nice explanation and nice tasks but the course is designed for graphlab. If you want to use something else the tasks are often badly described or it is impossible to pass the

por Jaime S M O

•8 de Jan de 2017

The material is excelente, But I would like you to promote a little more the community. Due to, sometime is difficult to advance when you don't understand a subject.

por Yuhuan Z

•30 de Jan de 2020

Great indeed, but you have to rely on the Graphlab to realize those functions. You need to figure out whether you will use Graphlab in your future studies or work.

por tim h

•6 de Jul de 2016

Rather elementary and slow-moving for my taste. But the material is competently presented and covers the material it is advertised to cover.

por Marco P

•17 de Jan de 2016

Missing in-lesson quiz, with all the homeworks being at the end of the week: this make following the pace quite tough

por Cameron B

•20 de Set de 2016

Good course content but it can be very difficult to get help if you are stuck on something.

por Mahbub A

•7 de Fev de 2016

Course materials are well organized. It could be improved by adding more description.

por Pratyush K D

•17 de Jul de 2020

Please show examples of codes in lectures just like the previous course

por Shreyo M

•25 de Dez de 2016

The course lacks deep theoretical understanding of the concepts.

por Akash B

•11 de Fev de 2019

Course should contain a project related to real life.

por Saiprasad B

•7 de Jan de 2017

very interesting environment to learn the subject.

por Konstantin B

•18 de Nov de 2017

Too much math...

por Deleted A

•23 de Nov de 2016

I'm a statistician, not a programmer. There is so much detail and explanation about the statistics and concepts behind how it works, but there is hardly ever an actual lesson on the code used or needed to implement the algorithms. When trying to fumble my way through the code, I found, on several occasions, the code in the self-directed lessons to be incomplete (I'm referring to pieces of code that were obviously meant to be there, but were missing), causing hours and hours of anguish and turmoil. I feel like there should be a lot more time spent on the actual coding and learning how to implement it within the code (similar to the 1st course), rather than spending an exuberant amount of time going through derivations and no time on actual coding and how to implement it within the programming language.

If you are a software designer/engineer or programmer, then you should be fine as long as you pay attention to the very long lessons and derivations and can fix the broken code that you are given. There are other mistakes within the quizzes as well, which make them near impossible to pass. For example, it is unclear which model you need to use to calculate in order to get the correct square foot. On other occasions, the question actually specifies to use the model from (3), whereas it actually wants you to use the model from (4) instead to get the correct answer. This course needs to have better quality checks to ensure needlessly lost time is minimized.

por Peter H

•28 de Ago de 2016

There are two frustrations with this iteration of the series. One: the quiz questions are often opaquely worded. Instead of being tested on the material just learned, it seemed like the objective was to learn to decode test questions.

2 and the most glaring omission, was that when students are asked to provide functions, only some are provided with a follow up test to ensure the function is working properly. If the output is syntactically correct but provides incorrect output then you're moving forward blindly after that. Then add the quiz questions from problem One above, and you're just wasting your time after that and building up frustration. Validating your code as you move along seems like a pretty rudimentary process to impart to students and when the teachers don't practice it themselves, there are bound to be problems.

I like the intent of the course, and considering my outsider background to computer science, the mathematics etc, I did learn a fair bit. Not enough to justify the increasing frustration I was feeling toward the end of this course. I have no intention of taking any more at this point, not from these authors.

por Matthew K

•26 de Jul de 2019

The course is well structured and organized; however, there is too much focus on the complex mathematical formulas and notation. The concepts are not terribly advanced but the math involvement makes it easy to get lost. The math is obviously necessary, but I just wished the lecturer had spent more time on the concepts than trying to explain what each of the subscripts, superscripts, and greek letters meant. There were many 7 minute lectures in which 5-6 minutes would be confusing math and 1-2 minutes would be actual conceptual talk. I was able to understand what was going on, but I felt it would have stuck much better if more time was spent discussing and reiterating the concepts. The math involvement could come from the coding assignments.

por Amol N

•18 de Fev de 2016

Pace is extremely slow. The instructor writes and talks simultaneously. The words are put so slow that it puts me off too sleep at times. I love taking courses where the instructor speaks at the right pace and keeps you involved. Carlos, the co instructor. One of the perfect MOOC is Calculus One by Jim Fowler

por Wayne P

•9 de Jan de 2019

Great concepts but material presented is very theoretical with minimal practical examples. As such it is easy to get lost unless you have advanced mathematics skills.

por Mesum R H

•9 de Dez de 2017

Too Statistical depth. Could have explained in a more exampled manner rather than deriving a maths equation class. We are not Phd Maths & Statistics

por Eric Z

•5 de Jul de 2018

The material is not very clear and I have to keep going through it and seek clarification from other resources.

por ramesh y

•28 de Ago de 2020

Really disappointed.

This whole confusion around turicreate and sklearn is a total waste of time for a learner.

por ashish s g

•15 de Fev de 2017

Very good course material. However, Graphlab is no longer free to use for commercial purpose.

por Ignacio A d l T P

•27 de Fev de 2018

PLEASE REVIEW EVERY QUIZ, in several of them I had to input a different answer from what I thought was the correct answer after VERY carefully following instructions, reading and re-reading, executing, looking for alternatives, incorrectly graded quiz answers significantly have slowed me and tested my willingness to continue. If the quizzes need to grow to 14-20 questions so that the exercises become more "step by step" that would be OK, since the whole purpose of taking this for someone with 10-12 years of professional experience is to become confident that I have understood the concepts, when I have to guess responses my confidence on my understanding of the concepts gets strongly tested. I chose your specialization because it is project oriented, has use cases and breaks down every course into very detailed concepts, it is awesome to have been able to deepen my understanding of regression through this course but it could have taken me a fourth of the time and have been an achievement and something fun to work on if the quizzes were correct versus a chore and a source of stress.

If you need further information please reach me at

por Omar A C T

•30 de Mai de 2016

this was a really boring course not for the contet bu the teacher i fell bored every video because the theacher was really slow in everything tha she was showing, it is realy dificult to get focussed in the real topics when the teacher spend a lot of time explaining things at the end wont be evaluated. As an example I am not english native speaker but a had to put the playback speed to 1.50x in order to not get bored in all videos, it was really dificult to follow the teacher at the normal velocity , i just got sleep every video. and as a record i really like this topic so it is the tacher, I took the first course and it was a good experience but this one is owfull

por adam h

•9 de Mar de 2016

gets way too in-depth with the math behind regression, to the point that it deters from the learning process. was hoping to learn better methods of interpreting or enacting regression, not the inner workings of the algorithms.

assignments got overly complex with confusing instructions. there are definitely some leaps made in the assumptions of what students' python capabilities are. vague instructions caused more frustration than desire to continue learning.

will continue in the specialization, but will not hesitate to drop out if instruction continues like this.

very disappointed.

por Monika K

•3 de Mai de 2016

I've spent a bit of time going through the Specialisation (paid for one course here) and other courses online that offer Machine Learning with Python. I looked at books too. I've come to the conclusion that it's unforgivable to teach it using graphlab (that you have to pay for after free licence expiry) when everyone else teaches scikit learn (sklearn) for good reason.The tools used on this course are also not very good.

Everyone else teaches using text editors - for a good reason, you learn how to code properly.

The lessons are also dry and there are far too many of them.

- Como encontrar propósito e sentido na vida
- Compreendendo a pesquisa médica
- Japonês para iniciantes
- Introdução à computação em nuvem
- Fundamentos de Mindfulness
- Fundamentos de Finanças
- Aprendizagem Automática
- Aprendizagem automática usando o Sas Viya
- A ciência do bem-estar
- Rastreamento de Contato com a Covid-19
- IA para todos
- Mercados Financeiros
- Introdução à Psicologia
- Introdução à AWS
- Marketing internacional
- C++
- Análise Preditiva e Mineração de Dados
- Aprendendo a Aprender da UCSD
- Programação para todos da Universidade do Michigan
- Linguagem R da JHU
- Treinamento de CPI do Google CBRS

- Processamento da Linguagem Natural (PLN)
- IA para Medicina
- Bom com palavras: escrita e edição
- Modelagem de doenças infecciosas
- A pronúncia do inglês americano
- Automatização de teste de software
- Aprendizagem profunda
- Python para todosPython para todos
- Ciência de Dados
- Fundamentos de negóciosFundamentos dos Negócios
- Habilidades em Excel para negócios
- Ciência de Dados com Python
- Finanças para todos
- Habilidades de comunicação para engenheiros
- Treinamento de vendas
- Desenvolvimento e gestão de marca pessoal
- Análise de Dados de Negócios da Wharton
- Psicologia Positiva da Universidade da Pensilvânia
- Aprendizagem Automática da Universidade de Washington
- Design Gráfico da CalArts

- Certificados profissionais
- Certificados MasterTrack
- Suporte de TI do Google
- Ciência de dados da IBM
- Engenharia de Dados do Google Cloud
- IA aplicada da IBM
- Arquitetura do Google Cloud
- Analista de Cibersegurança da IBM
- Automação da TI do Google com Python
- Profissional de Mainframe do IBM z/OS
- Gestão aplicada de projetos da UCI
- Certificado em Design Instrucional
- Certificado em Engenharia e Gerenciamento de Construção
- Certificado de Big Data
- Certificado de Aprendizagem Automática em Análise de Dados
- Certificado em Gestão de Inovação e Empreendedorismo
- Certificado de Sustentabilidade e Desenvolvimento
- Certificado de Serviço Social
- Certificado de IA e Aprendizagem Automática

- Graduações em Ciência da Computação
- Graduações em Negócios
- Graduações em Saúde Pública
- Graduações em Ciência de Dados
- Bacharelados
- Bacharelado em Ciência da Computação
- Mestrado em Engenharia Elétrica
- Conclusão de bacharelado
- Mestrado em Gestão
- Mestrado em Ciência da Computação
- Mestrado em Saúde Pública
- Mestrado em Contabilidade
- Mestrado em Tecnologia da Computação e da Informação
- MBA On-line
- Mestrado em Ciência de Dados Aplicada
- MBA Global
- Mestrado em Inovação e Empreendedorismo
- Mestrado em Ciência de Dados
- Mestrado em Ciência da Computação
- Mestrado em saúde pública