Informações sobre o curso
120,335 visualizações recentes

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 30 horas para completar

Sugerido: You should expect to watch about 3 hours of video lectures a week. Apart from the lectures, expect to put in between 3 and 5 hours a week....

Inglês

Legendas: Inglês

Habilidades que você terá

Finite DifferencesC++C Sharp (C#) (Programming Language)Matrices

100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.

Nível intermediário

Aprox. 30 horas para completar

Sugerido: You should expect to watch about 3 hours of video lectures a week. Apart from the lectures, expect to put in between 3 and 5 hours a week....

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
6 horas para concluir

1

11 vídeos (Total 200 mín.), 2 leituras, 1 teste
11 videos
01.02. Introduction. Linear elliptic partial differential equations - II 13min
01.03. Boundary conditions 22min
01.04. Constitutive relations 20min
01.05. Strong form of the partial differential equation. Analytic solution 22min
01.06. Weak form of the partial differential equation - I 12min
01.07. Weak form of the partial differential equation - II 15min
01.08. Equivalence between the strong and weak forms 24min
01.08ct.1. Intro to C++ (running your code, basic structure, number types, vectors) 21min
01.08ct.2. Intro to C++ (conditional statements, “for” loops, scope) 19min
01.08ct.3. Intro to C++ (pointers, iterators) 14min
2 leituras
Help us learn more about you!10min
"Paper and pencil" practice assignment on strong and weak forms2h
1 exercício prático
Unit 1 Quiz8min
Semana
2
3 horas para concluir

2

14 vídeos (Total 202 mín.), 1 teste
14 videos
02.01q. Response to a question 7min
02.02. Basic Hilbert spaces - I 15min
02.03. Basic Hilbert spaces - II 9min
02.04. The finite element method for the one-dimensional, linear, elliptic partial differential equation 22min
02.04q. Response to a question 6min
02.05. Basis functions - I 14min
02.06. Basis functions - II 14min
02.07. The bi-unit domain - I 11min
02.08. The bi-unit domain - II 16min
02.09. The finite dimensional weak form as a sum over element subdomains - I 16min
02.10. The finite dimensional weak form as a sum over element subdomains - II 12min
02.10ct.1. Intro to C++ (functions) 13min
02.10ct.2. Intro to C++ (C++ classes) 16min
1 exercício prático
Unit 2 Quiz6min
Semana
3
7 horas para concluir

3

14 vídeos (Total 213 mín.), 2 testes
14 videos
03.02. The matrix-vector weak form - I - II 17min
03.03. The matrix-vector weak form - II - I 15min
03.04. The matrix-vector weak form - II - II 13min
03.05. The matrix-vector weak form - III - I 22min
03.06. The matrix-vector weak form - III - II 13min
03.06ct.1. Dealii.org, running deal.II on a virtual machine with Oracle VirtualBox12min
03.06ct.2. Intro to AWS, using AWS on Windows24min
03.06ct.2c. In-Video Correction3min
03.06ct.3. Using AWS on Linux and Mac OS7min
03.07. The final finite element equations in matrix-vector form - I 22min
03.08. The final finite element equations in matrix-vector form - II 18min
03.08q. Response to a question 4min
03.08ct. Coding assignment 1 (main1.cc, overview of C++ class in FEM1.h) 19min
1 exercício prático
Unit 3 Quiz6min
Semana
4
5 horas para concluir

4

17 vídeos (Total 262 mín.), 1 teste
17 videos
04.02. The pure Dirichlet problem - II 17min
04.02c. In-Video Correction 1min
04.03. Higher polynomial order basis functions - I 23min
04.03c0. In-Video Correction 57s
04.03c1. In-Video Correction 34s
04.04. Higher polynomial order basis functions - I - II 16min
04.05. Higher polynomial order basis functions - II - I 13min
04.06. Higher polynomial order basis functions - III 23min
04.06ct. Coding assignment 1 (functions: class constructor to “basis_gradient”) 14min
04.07. The matrix-vector equations for quadratic basis functions - I - I 21min
04.08. The matrix-vector equations for quadratic basis functions - I - II 11min
04.09. The matrix-vector equations for quadratic basis functions - II - I 19min
04.10. The matrix-vector equations for quadratic basis functions - II - II 24min
04.11. Numerical integration -- Gaussian quadrature 13min
04.11ct.1. Coding assignment 1 (functions: “generate_mesh” to “setup_system”) 14min
04.11ct.2. Coding assignment 1 (functions: “assemble_system”) 26min
1 exercício prático
Unit 4 Quiz8min
4.7
66 avaliaçõesChevron Right

50%

comecei uma nova carreira após concluir estes cursos

50%

consegui um benefício significativo de carreira com este curso

Principais avaliações do Método dos Elementos Finitos aplicado aos Problemas de Física

por SSMar 13th 2017

It is very well structured and Dr Krishna Garikipati helps me understand the course in very simple manner. I would like to thank coursera community for making this course available.

por IKJul 21st 2019

The course is great and the tutors are very helpful. I just have a suggestion that there should be more coding assignment like one for every week.\n\nThank you

Instrutores

Avatar

Krishna Garikipati, Ph.D.

Professor of Mechanical Engineering, College of Engineering - Professor of Mathematics, College of Literature, Science and the Arts

Sobre Universidade de Michigan

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você adquire o Certificado, ganha acesso a todo o material do curso, incluindo avaliações com nota atribuída. Após concluir o curso, seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

  • You will need computing resources sufficient to install the code and run it. Depending on the type of installation this could be between a 13MB download of a tarred and gzipped file, to 45MB for a serial MacOSX binary and 192MB for a parallel MacOSX binary. Additionally, you will need a specific visualization program that we recommend. Altogether, if you have 1GB you should be fine. Alternately, you could download a Virtual Machine Interface.

  • You will be able to write code that simulates some of the most beautiful problems in physics, and visualize that physics.

  • You will need to know about matrices and vectors. Having seen partial differential equations will be very helpful. The code is in C++, but you don't need to know C++ at the outset. We will point you to resources that will teach you enough C++ for this class. However, you will need to have done some programming (Matlab, Fortran, C, Python, C++ should all do).

  • Apart from the lectures, expect to put in between 5 and 10 hours a week.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.