Informações sobre o curso
4.3
159 classificações
33 avaliações
Programa de cursos integrados
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 16 horas para completar

Sugerido: 8 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Habilidades que você terá

StreamsSequential Pattern MiningData Mining AlgorithmsData Mining
Programa de cursos integrados
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Horas para completar

Aprox. 16 horas para completar

Sugerido: 8 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
1 hora para concluir

Course Orientation

The course orientation will get you familiar with the course, your instructor, your classmates, and our learning environment....
Reading
1 video (Total 7 min), 3 leituras, 1 teste
Video1 vídeos
Reading3 leituras
Syllabus10min
About the Discussion Forums10min
Social Media10min
Quiz1 exercício prático
Orientation Quiz10min
Horas para completar
4 horas para concluir

Module 1

Module 1 consists of two lessons. Lesson 1 covers the general concepts of pattern discovery. This includes the basic concepts of frequent patterns, closed patterns, max-patterns, and association rules. Lesson 2 covers three major approaches for mining frequent patterns. We will learn the downward closure (or Apriori) property of frequent patterns and three major categories of methods for mining frequent patterns: the Apriori algorithm, the method that explores vertical data format, and the pattern-growth approach. We will also discuss how to directly mine the set of closed patterns....
Reading
9 videos (Total 49 min), 2 leituras, 3 testes
Video9 videos
1.2. Frequent Patterns and Association Rules5min
1.3. Compressed Representation: Closed Patterns and Max-Patterns7min
2.1. The Downward Closure Property of Frequent Patterns3min
2.2. The Apriori Algorithm6min
2.3. Extensions or Improvements of Apriori7min
2.4. Mining Frequent Patterns by Exploring Vertical Data Format3min
2.5. FPGrowth: A Pattern Growth Approach8min
2.6. Mining Closed Patterns3min
Reading2 leituras
Lesson 1 Overview10min
Lesson 2 Overview10min
Quiz2 exercícios práticos
Lesson 1 Quiz10min
Lesson 2 Quiz8min
Semana
2
Horas para completar
1 hora para concluir

Module 2

Module 2 covers two lessons: Lessons 3 and 4. In Lesson 3, we discuss pattern evaluation and learn what kind of interesting measures should be used in pattern analysis. We show that the support-confidence framework is inadequate for pattern evaluation, and even the popularly used lift and chi-square measures may not be good under certain situations. We introduce the concept of null-invariance and introduce a new null-invariant measure for pattern evaluation. In Lesson 4, we examine the issues on mining a diverse spectrum of patterns. We learn the concepts of and mining methods for multiple-level associations, multi-dimensional associations, quantitative associations, negative correlations, compressed patterns, and redundancy-aware patterns....
Reading
9 videos (Total 47 min), 2 leituras, 2 testes
Video9 videos
3.2. Interestingness Measures: Lift and χ25min
3.3. Null Invariance Measures5min
3.4. Comparison of Null-Invariant Measures7min
4.1. Mining Multi-Level Associations4min
4.2. Mining Multi-Dimensional Associations2min
4.3. Mining Quantitative Associations4min
4.4. Mining Negative Correlations6min
4.5. Mining Compressed Patterns7min
Reading2 leituras
Lesson 3 Overview10min
Lesson 4 Overview10min
Quiz2 exercícios práticos
Lesson 3 Quiz10min
Lesson 4 Quiz8min
Semana
3
Horas para completar
2 horas para concluir

Module 3

Module 3 consists of two lessons: Lessons 5 and 6. In Lesson 5, we discuss mining sequential patterns. We will learn several popular and efficient sequential pattern mining methods, including an Apriori-based sequential pattern mining method, GSP; a vertical data format-based sequential pattern method, SPADE; and a pattern-growth-based sequential pattern mining method, PrefixSpan. We will also learn how to directly mine closed sequential patterns. In Lesson 6, we will study concepts and methods for mining spatiotemporal and trajectory patterns as one kind of pattern mining applications. We will introduce a few popular kinds of patterns and their mining methods, including mining spatial associations, mining spatial colocation patterns, mining and aggregating patterns over multiple trajectories, mining semantics-rich movement patterns, and mining periodic movement patterns....
Reading
10 videos (Total 56 min), 2 leituras, 2 testes
Video10 videos
5.2. GSP: Apriori-Based Sequential Pattern Mining3min
5.3. SPADE—Sequential Pattern Mining in Vertical Data Format3min
5.4. PrefixSpan—Sequential Pattern Mining by Pattern-Growth4min
5.5. CloSpan—Mining Closed Sequential Patterns3min
6.1. Mining Spatial Associations4min
6.2. Mining Spatial Colocation Patterns9min
6.3. Mining and Aggregating Patterns over Multiple Trajectories9min
6.4. Mining Semantics-Rich Movement Patterns3min
6.5. Mining Periodic Movement Patterns7min
Reading2 leituras
Lesson 5 Overview10min
Lesson 6 Overview10min
Quiz2 exercícios práticos
Lesson 5 Quiz10min
Lesson 6 Quiz8min
Semana
4
Horas para completar
5 horas para concluir

Week 4

Module 4 consists of two lessons: Lessons 7 and 8. In Lesson 7, we study mining quality phrases from text data as the second kind of pattern mining application. We will mainly introduce two newer methods for phrase mining: ToPMine and SegPhrase, and show frequent pattern mining may be an important role for mining quality phrases in massive text data. In Lesson 8, we will learn several advanced topics on pattern discovery, including mining frequent patterns in data streams, pattern discovery for software bug mining, pattern discovery for image analysis, and pattern discovery and society: privacy-preserving pattern mining. Finally, we look forward to the future of pattern mining research and application exploration....
Reading
9 videos (Total 98 min), 2 leituras, 3 testes
Video9 videos
7.2. Previous Phrase Mining Methods10min
7.3. ToPMine: Phrase Mining without Training Data12min
7.4. SegPhrase: Phrase Mining with Tiny Training Sets14min
8.1. Frequent Pattern Mining in Data Streams19min
8.2. Pattern Discovery for Software Bug Mining12min
8.3. Pattern Discovery for Image Analysis6min
8.4. Advanced Topics on Pattern Discovery: Pattern Mining and Society—Privacy Issue13min
8.5. Advanced Topics on Pattern Discovery: Looking Forward4min
Reading2 leituras
Lesson 7 Overview10min
Lesson 8 Overview10min
Quiz2 exercícios práticos
Lesson 7 Quiz8min
Lesson 8 Quiz8min
4.3
33 avaliaçõesChevron Right

Melhores avaliações

por DDSep 10th 2017

The first several chapters are very impressive. The last three lessons are a little difficult for first-learners. The illustration are clear and easy to understand.

por GLJan 18th 2018

Excellent course. Now I have a big picture about pattern discovery and understand some popular algorithm. Also professor points out the direction for further study.

Instrutores

Avatar

Jiawei Han

Abel Bliss Professor
Department of Computer Science
Graduation Cap

Start working towards your Master's degree

This curso is part of the 100% online Master in Computer Science from University of Illinois at Urbana-Champaign. If you are admitted to the full program, your courses count towards your degree learning.

Sobre University of Illinois at Urbana-Champaign

The University of Illinois at Urbana-Champaign is a world leader in research, teaching and public engagement, distinguished by the breadth of its programs, broad academic excellence, and internationally renowned faculty and alumni. Illinois serves the world by creating knowledge, preparing students for lives of impact, and finding solutions to critical societal needs. ...

Sobre o Programa de cursos integrados Data Mining

The Data Mining Specialization teaches data mining techniques for both structured data which conform to a clearly defined schema, and unstructured data which exist in the form of natural language text. Specific course topics include pattern discovery, clustering, text retrieval, text mining and analytics, and data visualization. The Capstone project task is to solve real-world data mining challenges using a restaurant review data set from Yelp. Courses 2 - 5 of this Specialization form the lecture component of courses in the online Master of Computer Science Degree in Data Science. You can apply to the degree program either before or after you begin the Specialization....
Data Mining

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você se inscreve no curso, tem acesso a todos os cursos na Especialização e pode obter um certificado quando concluir o trabalho. Seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.