Chevron Left
Voltar para A Complete Reinforcement Learning System (Capstone)

Comentários e feedback de alunos de A Complete Reinforcement Learning System (Capstone) da instituição Universidade de AlbertaUniversidade de Alberta

4.7
estrelas
582 classificações

Sobre o curso

In this final course, you will put together your knowledge from Courses 1, 2 and 3 to implement a complete RL solution to a problem. This capstone will let you see how each component---problem formulation, algorithm selection, parameter selection and representation design---fits together into a complete solution, and how to make appropriate choices when deploying RL in the real world. This project will require you to implement both the environment to stimulate your problem, and a control agent with Neural Network function approximation. In addition, you will conduct a scientific study of your learning system to develop your ability to assess the robustness of RL agents. To use RL in the real world, it is critical to (a) appropriately formalize the problem as an MDP, (b) select appropriate algorithms, (c ) identify what choices in your implementation will have large impacts on performance and (d) validate the expected behaviour of your algorithms. This capstone is valuable for anyone who is planning on using RL to solve real problems. To be successful in this course, you will need to have completed Courses 1, 2, and 3 of this Specialization or the equivalent. By the end of this course, you will be able to: Complete an RL solution to a problem, starting from problem formulation, appropriate algorithm selection and implementation and empirical study into the effectiveness of the solution....

Melhores avaliações

JJ

27 de abr de 2020

This is the final chapter. It is one of the easiest and it was fun doing that lunar landing project. This specialisation is the best for a person taking baby steps in the reinforcement learning.

CR

26 de fev de 2020

Great course for learning the fundamentals. I liked that it tied into function approximation for deep reinforcement learning. The text book made the fundamental concepts more clear.

Filtrar por:

1 — 25 de 123 Avaliações para o A Complete Reinforcement Learning System (Capstone)

por Daniel M

7 de nov de 2019

por Justin S

6 de dez de 2019

por Kayla S

13 de jan de 2020

por Alberto H

4 de jan de 2020

por D. R

2 de jan de 2020

por Ivan S F

14 de dez de 2019

por David C

13 de nov de 2019

por אלון ה

29 de dez de 2019

por Maxim V

25 de jan de 2020

por Neil H

10 de nov de 2021

por Alireza M

10 de dez de 2021

por Stewart A

9 de nov de 2019

por Qiuping X

24 de dez de 2019

por Connor W

1 de abr de 2021

por Maximiliano B

26 de abr de 2020

por Mohammed A N

29 de set de 2020

por Niraj S

23 de mai de 2020

por Jesse W

29 de jul de 2020

por Mukund C

2 de abr de 2020

por César S

28 de set de 2021

por Akash B

8 de dez de 2019

por Walter O A

18 de jan de 2020

por Varun B

20 de set de 2020

por Pavel I

27 de jul de 2021

por Dale G

2 de ago de 2021