Sobre este Programa de cursos integrados

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível iniciante

High school-level algebra

Aprox. 2 meses para completar

9 horas/semana sugeridas

Inglês

Legendas: Inglês, Coreano

O que você vai aprender

  • Check

    Create and interpret data visualizations using the Python programming language and associated packages & libraries

  • Check

    Apply and interpret inferential procedures when analyzing real data

  • Check

    Apply statistical modeling techniques to data (ie. linear and logistic regression, linear models, multilevel models, Bayesian inference techniques)

  • Check

    Understand importance of connecting research questions to data analysis methods.

Habilidades que você terá

Python ProgrammingData Visualization (DataViz)Statistical ModelStatistical inference methods

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível iniciante

High school-level algebra

Aprox. 2 meses para completar

9 horas/semana sugeridas

Inglês

Legendas: Inglês, Coreano

Como o Programa de cursos integrados funciona

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 3 cursos

Curso1

Understanding and Visualizing Data with Python

4.6
140 classificações
42 avaliações
In this course, learners will be introduced to the field of statistics, including where data come from, study design, data management, and exploring and visualizing data. Learners will identify different types of data, and learn how to visualize, analyze, and interpret summaries for both univariate and multivariate data. Learners will also be introduced to the differences between probability and non-probability sampling from larger populations, the idea of how sample estimates vary, and how inferences can be made about larger populations based on probability sampling. At the end of each week, learners will apply the statistical concepts they’ve learned using Python within the course environment. During these lab-based sessions, learners will discover the different uses of Python as a tool, including the Numpy, Pandas, Statsmodels, Matplotlib, and Seaborn libraries. Tutorial videos are provided to walk learners through the creation of visualizations and data management, all within Python. This course utilizes the Jupyter Notebook environment within Coursera....
Curso2

Inferential Statistical Analysis with Python

3.9
54 classificações
16 avaliações
In this course, we will explore basic principles behind using data for estimation and for assessing theories. We will analyze both categorical data and quantitative data, starting with one population techniques and expanding to handle comparisons of two populations. We will learn how to construct confidence intervals. We will also use sample data to assess whether or not a theory about the value of a parameter is consistent with the data. A major focus will be on interpreting inferential results appropriately. At the end of each week, learners will apply what they’ve learned using Python within the course environment. During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera....
Curso3

Fitting Statistical Models to Data with Python

4.0
32 classificações
8 avaliações
In this course, we will expand our exploration of statistical inference techniques by focusing on the science and art of fitting statistical models to data. We will build on the concepts presented in the Statistical Inference course (Course 2) to emphasize the importance of connecting research questions to our data analysis methods. We will also focus on various modeling objectives, including making inference about relationships between variables and generating predictions for future observations. This course will introduce and explore various statistical modeling techniques, including linear regression, logistic regression, generalized linear models, hierarchical and mixed effects (or multilevel) models, and Bayesian inference techniques. All techniques will be illustrated using a variety of real data sets, and the course will emphasize different modeling approaches for different types of data sets, depending on the study design underlying the data (referring back to Course 1, Understanding and Visualizing Data with Python). During these lab-based sessions, learners will work through tutorials focusing on specific case studies to help solidify the week’s statistical concepts, which will include further deep dives into Python libraries including Statsmodels, Pandas, and Seaborn. This course utilizes the Jupyter Notebook environment within Coursera....

Instrutores

Avatar

Brenda Gunderson

Lecturer IV and Research Fellow
Department of Statistics
Avatar

Brady T. West

Research Associate Professor
Institute for Social Research
Avatar

Kerby Shedden

Professor
Department of Statistics

Sobre Universidade de Michigan

The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future....

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • This specialization is made up of three courses, each with four weeks/modules. Each week in a course requires a commitment of roughly 3-6 hours, which will vary by learner.

  • High school-level algebra is the only background knowledge mandatory for the first course in the series. A basic Python and/or coding background is recommended.

  • It is definitely recommended to take this specialization in order.

  • You will not earn University credit for completing this specialization.

  • Upon completion of all courses in this specialization, you will have a solid grasp of statistical analysis and will be able to conduct analyses using the Python programming language. You'll be able to create data visualizations in Python, as well as interpret and explain them. You will be able to utilize data for estimation and assessing theories, interpretation of inferential results, and you will be able to apply more advanced statistical modeling procedures.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.