Learners should have some familiarity with Python before starting this course. We recommend the Python for Everybody Specialization.
Programa de cursos integrados Sports Performance Analytics
Predictive Sports Analytics with Real Sports Data. Anticipate player and team performance using sports analytics principles.
oferecido por
Sobre este Programa de cursos integrados
Projeto de Aprendizagem Aplicada
Learners will apply methods and techniques learned to sports datasets to generate their own results rather than relying on the data processing performed by others. As a consequence the learner will be empowered to explore their own ideas about sports team performance, test them out using the data, and so become a producer of sports analytics rather than a consumer.
Learners should have some familiarity with Python before starting this course. We recommend the Python for Everybody Specialization.
Como funciona o programa de cursos integrados
Fazer cursos
Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.
Projeto prático
Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.
Obtenha um certificado
Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

Este Programa de cursos integrados contém 5 cursos
Foundations of Sports Analytics: Data, Representation, and Models in Sports
This course provides an introduction to using Python to analyze team performance in sports. Learners will discover a variety of techniques that can be used to represent sports data and how to extract narratives based on these analytical techniques. The main focus of the introduction will be on the use of regression analysis to analyze team and player performance data, using examples drawn from the National Football League (NFL), the National Basketball Association (NBA), the National Hockey League (NHL), the English Premier LEague (EPL, soccer) and the Indian Premier League (IPL, cricket).
Moneyball and Beyond
The book Moneyball triggered a revolution in the analysis of performance statistics in professional sports, by showing that data analytics could be used to increase team winning percentage. This course shows how to program data using Python to test the claims that lie behind the Moneyball story, and to examine the evolution of Moneyball statistics since the book was published. The learner is led through the process of calculating baseball performance statistics from publicly available datasets. The course progresses from the analysis of on base percentage and slugging percentage to more advanced measures derived using the run expectancy matrix, such as wins above replacement (WAR). By the end of this course the learner will be able to use these statistics to conduct their own team and player analyses.
Prediction Models with Sports Data
In this course the learner will be shown how to generate forecasts of game results in professional sports using Python. The main emphasis of the course is on teaching the method of logistic regression as a way of modeling game results, using data on team expenditures. The learner is taken through the process of modeling past results, and then using the model to forecast the outcome games not yet played. The course will show the learner how to evaluate the reliability of a model using data on betting odds. The analysis is applied first to the English Premier League, then the NBA and NHL. The course also provides an overview of the relationship between data analytics and gambling, its history and the social issues that arise in relation to sports betting, including the personal risks.
Wearable Technologies and Sports Analytics
Sports analytics now include massive datasets from athletes and teams that quantify both training and competition efforts. Wearable technology devices are being worn by athletes everyday and provide considerable opportunities for an in-depth look at the stress and recovery of athletes across entire seasons. The capturing of these large datasets has led to new hypotheses and strategies regarding injury prevention as well as detailed feedback for athletes to try and optimize training and recovery.
oferecido por

Universidade de Michigan
The mission of the University of Michigan is to serve the people of Michigan and the world through preeminence in creating, communicating, preserving and applying knowledge, art, and academic values, and in developing leaders and citizens who will challenge the present and enrich the future.
Perguntas Frequentes – FAQ
Qual é a política de reembolso?
Posso me inscrever em um único curso?
Existe algum auxílio financeiro disponível?
Posso fazer o curso gratuitamente?
Este curso é realmente 100% on-line? Eu preciso assistir alguma aula pessoalmente?
Quanto tempo é necessário para concluir a Especialização?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Vou ganhar créditos universitários por concluir a Especialização?
Mais dúvidas? Visite o Central de Ajuda ao estudante.