Predict Gas Guzzlers using a Neural Net Model on the MPG Data Set

4.6
estrelas
27 classificações
oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Complete a random Training and Test Set from one Data Source using an R function.

Practice data distribution using R and ggplot2.

Apply a Neural Net model to the Data and examine the results by building a Confusion Matrix.

Clock2 Hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this 1-hour long project-based course, you will learn how to (complete a training and test set using an R function, practice looking at data distribution using R and ggplot2, Apply a Neural Net model to the data, and examine the results using a Confusion Matrix. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

Random ForestData ScienceData AnalysisMachine Learning

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Task 1: In this task the Learner will be introduced to the Course Objectives, which is to how to execute a Neural Network using the NeuralNet R package on the MPG data set. There will be a short discussion about the Interface and an Instructor Bio.

  2. Task 2: The Learners will get experience looking at the data using ggplot2. This is important in order for the practitioner to see the balance of the data, especially as it relates to the Response Variable.

  3. Task 3: The Learner will get experience creating Testing and Training Data Sets. There are multiple ways to do this and the Instructor will go over two of them in this Task.

  4. Task 4: The Learner will get experience with the syntax of the Neuralnet package in R by building out a neural net model. There will be a short discussion on the differences between the predict function in R and compute with the Neuralnet package as well.

  5. Task 5: The Learner will get experience evaluation models in this Task. The Confusion Matrix will be discussed as the evaluation metric of choice for the specific problem. The conclusion of the course will use the two evaluation metrics see how well the model performed on the test data set.

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.