Chevron Left
Voltar para Modelos Regressivos

Comentários e feedback de alunos de Modelos Regressivos da instituição Universidade Johns Hopkins

4.4
estrelas
3,247 classificações
556 avaliações

Sobre o curso

Linear models, as their name implies, relates an outcome to a set of predictors of interest using linear assumptions. Regression models, a subset of linear models, are the most important statistical analysis tool in a data scientist’s toolkit. This course covers regression analysis, least squares and inference using regression models. Special cases of the regression model, ANOVA and ANCOVA will be covered as well. Analysis of residuals and variability will be investigated. The course will cover modern thinking on model selection and novel uses of regression models including scatterplot smoothing....

Melhores avaliações

KA
16 de Dez de 2017

Excellent course that is jam-packed with useful material! It is quite challenging and gives a thorough grounding in how to approach the process of selecting a linear regression model for a data set.

BA
31 de Jan de 2017

It really helped me to have a better understanding of these Regression Models. However, I've noticed that there is a video recording repeated: Week 3, Model Selection. Part 3 is included in Part 2.

Filtrar por:

476 — 500 de 536 Avaliações para o Modelos Regressivos

por Mark S

24 de Abr de 2018

Lots of math, but it would be more productive to focus more on the output of R and better understand the results

por Mertz

20 de Mar de 2018

Bad audio and video quality. Too fast on some complex ideas and too slow when come repetitions between videos...

por Andres C S

1 de Mar de 2016

I think this course needs more emphasis on practical applications and less mathematical background.

por Erwin V

20 de Dez de 2016

Very interesting course, yet course content could be spread more evenly (week 4 is really a lot)

por Prabeeti B

17 de Set de 2019

Course has more theoretical concept than application.. It has to be more application based

por Praveen J

22 de Abr de 2020

I think a revamping of the concepts in a more ellabroate way is required in the course

por Suleman W

9 de Nov de 2017

I did find it difficult to follow and understand some of the materials.

por Rafal K

28 de Fev de 2017

Many things are not clear enough in multivariable regression part.

por Eric L

2 de Fev de 2016

good quick overview, could have more actual R examples in lectures

por Ansh T

22 de Mar de 2020

Topics like logistic regression were not explained clearly

por Angela W

27 de Nov de 2017

I learned a lot, but it was so much content for 4 weeks!

por Gareth S

16 de Jul de 2017

Expects a level of statistical knowledge already.

por David S

4 de Nov de 2018

needed to consult external resources extensively

por Lei M

23 de Ago de 2017

Some of the materials are too much math for me.

por Xuwei L

22 de Set de 2016

the lecture notes is a bit confusing

por Marcela Q

6 de Jan de 2020

Terrible professor, good book

por Hani M

24 de Out de 2017

was tough

por Barry S

15 de Mar de 2016

This course is the first one in the Data Science series to lapse in terms of the clarity of the lectures, and the sense of cohesiveness of the material. Brian Caffo's lectures in Statistical Inference were good; in this course they seem to veer left and right rather than get straight to the essence of whatever subject he is lecturing about.

A more structured final project would have been helpful. The instructions on this project weren't quite so blunt as to say "Take this data set, do some regression-y stuff and come back with something about these two variables," but that's basically as far as our instructions went. It could have been a great learning experience to have a more detailed guide through the construction of a regression analysis, but instead an assignment which was 40% of our grade was put together as an afterthought. It was the assignment equivalent of stopping in the 7-11 a block away from a birthday party to buy a card.

Also, in terms of delivering the content: Mr. Caffo needs to structure his slide/video arrangements so that he is not standing in front of the text. Think of it from the point of view of somebody wanting to listen and read at the same time.

por R. H

19 de Mar de 2020

The timing on this course is very inaccurate - it should take much longer than 4 weeks, 6 weeks at the absolute minimum. I say this because Week 4 has so much information crammed in of all different types of General Linear Models (i.e. models that are not necessarily a straight line). Binomials, Poisson, splines - each of these topics could have their own weeks, but instead they are quickly summarized for one week with the student expect to understand them for the quiz. The other issue, which has been a problem with all courses in this specialization, is the discussion boards. They are totally abandoned by mods; good luck finding any post that isn't "grade my project? I'll grade yours!" despite a mod post that says such requests will be deleted. The board is totally flood with those requests, and makes me wonder how many people are passing these classes wrongly because "if u give me 100 i will grade yours too!" It totally devalues the program. The creators seemingly abandoning Coursera have made this certificate a waste.

por Renata G

28 de Mar de 2021

I came from

Statistical Inference and I felt very sorry when I see the same instructor here at this course.

Regression Models is a very important subject and I am very interested in real learning. However, this course was very, very, very disappointing to me. I am deep sorry for my sincerity... but this was not as high-quality course. Total lack of any support from the TA/instructor team is frustrating. Wikipedia, youtube videos, books... were much more helpful and effective for me. I believe the real issue lay in the teaching style. Brian seemed a very intelligent person, but he does not teach well. His way of explaining things was really bad: he speaks too fast (sometimes he changes terms...), he skips from slide to slide very quickly, he often do not provide adequate explanations. He also does not approach realistic cases to apply Regression Models in day a day basis. His book is only a copy of his teaching slides. I certainly do not recommend this course.

por Kaspar M

12 de Out de 2020

There's some useful material in the course. There were some major issues though: 1) there is so much to cover that this really ought to be broken into two courses or more. It is not a 4-week course. It would really be helpful to break it into chunks and include some more comprehensive exercises so the learner can get a full grasp of the subject. The quizzes, particularly the final one, were curiously disconnected from the course material. The final project as assigned was just straight-out baffling. I noticed some learners submitting garbage solutions for review, presumably just so they could look at what other people were doing to figure out what they were supposed to be doing. Oh one more thing: Caffo never explains what ANOVA is, he just starts using it. Overall: I would like to know who is doing a well-designed MOOC on this, because I would like to take it.

por Mohamed A

2 de Nov de 2016

This course failed greatly to balance the workload by week. The third week which I think was the most important one have too many information to learn and assimilate whereas the first two weeks could be rearranged to start multivariate regression earlier. Another proof of week 3 issue: the related swirl exercises start in week2 (2 of them) and finish in week4 (2 more exercises) !!!!!

I think one of the most important expertise and knowledge that a data scientist must know and master was unfairly squeezed in one week leaving no time for the learner/student to do more search/exercises on the subject.

por Pedro J

6 de Jun de 2016

The professor doesn't explain clearly as part of the videos is his correcting himself or saying the same thing two or three times. And why must the videos show the teacher? It distracts from the slides and seeing him move doesn't help understand anything better

Concepts like VIF or hat values are not very well explained by the teacher, at least the SWIRL lesson explains it correctly. ANOVA and ANCOVA are mentioned in the description but they aren't explained anywhere. ANOVA is used without any explanation of what it is.

I found myself searching online for other sources to understand the concepts.

por Lee D

29 de Set de 2016

I again found many of the lectures to be difficult to follow along, there seems to be lots of different styles of videos in the way that the person was superimposed on the slides. In fact it was often impossible to read the text in the slide due to the size of the presenters head which obscured the text. Honestly this data science course is getting worse as the months progress, you really should think of updating the content of the course if you want to continue to charge money for it. 2 stars as I did actually learn something despite the quality of the material and its delivery.

por B C

1 de Mar de 2016

Overall okay course but the lectures are too focused on theory with some applications to the real world. I think this course needs to be reconfigured and taught from an applied focus instead of 30% applied 70% theory.

Also the new format is horrible and TAs are nonexistent as are discussions in general on the forums now. The TAs were a critical learning component before especially considering that unlike on EdX where course staff actually participates in the forums, on Coursera I do not think I have ever observed course staff actively participating in the forums.