Informações sobre o curso
4.7
225 classificações
79 avaliações
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível iniciante

Nível iniciante

Horas para completar

Aprox. 8 horas para completar

Sugerido: 6 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês
100% online

100% online

Comece imediatamente e aprenda em seu próprio cronograma.
Prazos flexíveis

Prazos flexíveis

Redefinir os prazos de acordo com sua programação.
Nível iniciante

Nível iniciante

Horas para completar

Aprox. 8 horas para completar

Sugerido: 6 hours/week...
Idiomas disponíveis

Inglês

Legendas: Inglês

Programa - O que você aprenderá com este curso

Semana
1
Horas para completar
3 horas para concluir

Fibonacci: It's as easy as 1, 1, 2, 3

In this week's lectures, we learn about the Fibonacci numbers, the golden ratio, and their relationship. We conclude the week by deriving the celebrated Binet's formula, an explicit formula for the Fibonacci numbers in terms of powers of the golden ratio and its reciprical. ...
Reading
7 vídeos (total de (Total 55 mín.) min), 9 leituras, 4 testes
Video7 videos
The Fibonacci Sequence8min
The Fibonacci Sequence Redux7min
The Golden Ratio8min
Fibonacci Numbers and the Golden Ratio6min
Binet's Formula10min
Mathematical Induction7min
Reading9 leituras
Welcome and Course Information10min
Get to Know Your Classmates10min
Fibonacci Numbers with Negative Indices10min
The Lucas Numbers10min
Neighbour Swapping10min
Some Algebra Practice10min
Linearization of Powers of the Golden Ratio10min
Another Derivation of Binet's formula10min
Binet's Formula for the Lucas Numbers10min
Quiz4 exercícios práticos
Diagnostic Quiz10min
The Fibonacci Numbers6min
The Golden Ratio6min
Week 120min
Semana
2
Horas para completar
3 horas para concluir

Identities, sums and rectangles

In this week's lectures, we learn about the Fibonacci Q-matrix and Cassini's identity. Cassini's identity is the basis for a famous dissection fallacy colourfully named the Fibonacci bamboozlement. A dissection fallacy is an apparent paradox arising from two arrangements of different area from one set of puzzle pieces. We also derive formulas for the sum of the first n Fibonacci numbers, and the sum of the first n Fibonacci numbers squared. Finally, we show how to construct a golden rectangle, and how this leads to the beautiful image of spiralling squares. ...
Reading
9 vídeos (total de (Total 65 mín.) min), 10 leituras, 3 testes
Video9 videos
Cassini's Identity8min
The Fibonacci Bamboozlement6min
Sum of Fibonacci Numbers8min
Sum of Fibonacci Numbers Squared7min
The Golden Rectangle5min
Spiraling Squares3min
Matrix Algebra: Addition and Multiplication5min
Matrix Algebra: Determinants7min
Reading10 leituras
Do You Know Matrices?10min
The Fibonacci Addition Formula10min
The Fibonacci Double Index Formula10min
Do You Know Determinants?10min
Proof of Cassini's Identity10min
Catalan's Identity10min
Sum of Lucas Numbers10min
Sums of Even and Odd Fibonacci Numbers10min
Sum of Lucas Numbers Squared10min
Area of the Spiraling Squares10min
Quiz3 exercícios práticos
The Fibonacci Bamboozlement6min
Fibonacci Sums6min
Week 220min
Semana
3
Horas para completar
3 horas para concluir

The most irrational number

In this week's lectures, we learn about the golden spiral and the Fibonacci spiral. Because of the relationship between the Fibonacci numbers and the golden ratio, the Fibonacci spiral eventually converges to the golden spiral. You will recognise the Fibonacci spiral because it is the icon of our course. We next learn about continued fractions. To construct a continued fraction is to construct a sequence of rational numbers that converges to a target irrational number. The golden ratio is the irrational number whose continued fraction converges the slowest. We say that the golden ratio is the irrational number that is the most difficult to approximate by a rational number, or that the golden ratio is the most irrational of the irrational numbers. We then define the golden angle, related to the golden ratio, and use it to model the growth of a sunflower head. Use of the golden angle in the model allows a fine packing of the florets, and results in the unexpected appearance of the Fibonacci numbers in the head of a sunflower. ...
Reading
8 vídeos (total de (Total 61 mín.) min), 8 leituras, 3 testes
Video8 videos
An Inner Golden Rectangle5min
The Fibonacci Spiral6min
Fibonacci Numbers in Nature4min
Continued Fractions15min
The Golden Angle7min
A Simple Model for the Growth of a Sunflower8min
Concluding remarks4min
Reading8 leituras
The Eye of God10min
Area of the Inner Golden Rectangle10min
Continued Fractions for Square Roots10min
Continued Fraction for e10min
The Golden Ratio and the Ratio of Fibonacci Numbers10min
The Golden Angle and the Ratio of Fibonacci Numbers10min
Please Rate this Course10min
Acknowledgments10min
Quiz3 exercícios práticos
Spirals6min
Fibonacci Numbers in Nature6min
Week 320min
4.7
79 avaliaçõesChevron Right

Melhores avaliações

por BSAug 30th 2017

Very well designed. It was a lot of fun taking this course. It's the kind of course that can get you excited about higher mathematics. Sincere thanks to Prof. Chasnov and HKUST.

por HJDec 4th 2016

Good course for introduction to Fibonacci Numbers. Should include more introduction lectures such as group theory, category theory, type theory, number theory, and algorithms.

Instrutores

Avatar

Jeffrey R. Chasnov

Professor
Department of Mathematics

Sobre The Hong Kong University of Science and Technology

HKUST - A dynamic, international research university, in relentless pursuit of excellence, leading the advance of science and technology, and educating the new generation of front-runners for Asia and the world....

Perguntas Frequentes – FAQ

  • Ao se inscrever para um Certificado, você terá acesso a todos os vídeos, testes e tarefas de programação (se aplicável). Tarefas avaliadas pelos colegas apenas podem ser enviadas e avaliadas após o início da sessão. Caso escolha explorar o curso sem adquiri-lo, talvez você não consiga acessar certas tarefas.

  • Quando você adquire o Certificado, ganha acesso a todo o material do curso, incluindo avaliações com nota atribuída. Após concluir o curso, seu Certificado eletrônico será adicionado à sua página de Participações e você poderá imprimi-lo ou adicioná-lo ao seu perfil no LinkedIn. Se quiser apenas ler e assistir o conteúdo do curso, você poderá frequentá-lo como ouvinte sem custo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.