Basic understanding of Java or Python programming language
Programa de cursos integrados Serverless Data Processing with Dataflow
Building Big Data Applications that Scale
oferecido por
O que você vai aprender
Demonstrate how Apache Beam and Cloud Dataflow work together to fulfill your organization’s data processing needs
Write pipelines and advanced components such as utility functions, schemas, and watermarks.
Perform monitoring, troubleshooting, testing and CI/CD on Dataflow pipelines.
Deploy Dataflow pipelines with reliability in mind to maximize stability for your data processing platform
Sobre este Programa de cursos integrados
Projeto de Aprendizagem Aplicada
This specialization incorporates hands-on labs using Qwiklabs platform. The labs build on the concepts covered in the course modules. Where applicable, we have provided Java and Python versions of the labs. For labs that require adding/updating code, we have provided a recommended solution for your reference.
Basic understanding of Java or Python programming language
Como funciona o programa de cursos integrados
Fazer cursos
Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.
Projeto prático
Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.
Obtenha um certificado
Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

Este Programa de cursos integrados contém 3 cursos
Serverless Data Processing with Dataflow: Foundations
This course is part 1 of a 3-course series on Serverless Data Processing with Dataflow. In this first course, we start with a refresher of what Apache Beam is and its relationship with Dataflow. Next, we talk about the Apache Beam vision and the benefits of the Beam Portability framework. The Beam Portability framework achieves the vision that a developer can use their favorite programming language with their preferred execution backend. We then show you how Dataflow allows you to separate compute and storage while saving money, and how identity, access, and management tools interact with your Dataflow pipelines. Lastly, we look at how to implement the right security model for your use case on Dataflow.
Serverless Data Processing with Dataflow: Develop Pipelines
In this second installment of the Dataflow course series, we are going to be diving deeper on developing pipelines using the Beam SDK. We start with a review of Apache Beam concepts. Next, we discuss processing streaming data using windows, watermarks and triggers. We then cover options for sources and sinks in your pipelines, schemas to express your structured data, and how to do stateful transformations using State and Timer APIs. We move onto reviewing best practices that help maximize your pipeline performance. Towards the end of the course, we introduce SQL and Dataframes to represent your business logic in Beam and how to iteratively develop pipelines using Beam notebooks.
Serverless Data Processing with Dataflow: Operations
In the last installment of the Dataflow course series, we will introduce the components of the Dataflow operational model. We will examine tools and techniques for troubleshooting and optimizing pipeline performance. We will then review testing, deployment, and reliability best practices for Dataflow pipelines. We will conclude with a review of Templates, which makes it easy to scale Dataflow pipelines to organizations with hundreds of users. These lessons will help ensure that your data platform is stable and resilient to unanticipated circumstances.
oferecido por

Google Cloud
We help millions of organizations empower their employees, serve their customers, and build what’s next for their businesses with innovative technology created in—and for—the cloud. Our products are engineered for security, reliability, and scalability, running the full stack from infrastructure to applications to devices and hardware. Our teams are dedicated to helping customers apply our technologies to create success.
Perguntas Frequentes – FAQ
Qual é a política de reembolso?
Posso me inscrever em um único curso?
Existe algum auxílio financeiro disponível?
Posso fazer o curso gratuitamente?
Este curso é realmente 100% on-line? Eu preciso assistir alguma aula pessoalmente?
Vou ganhar créditos universitários por concluir a Especialização?
Quanto tempo é necessário para concluir a Especialização?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Mais dúvidas? Visite o Central de Ajuda ao estudante.