Sobre este Programa de cursos integrados

6.315 visualizações recentes
A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project.
Certificados compartilháveis
Tenha o certificado após a conclusão
Cursos 100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível
Definição e manutenção de prazos flexíveis.
Nível intermediário
Aproximadamente 5 meses para ser concluído
Ritmo sugerido de 3 horas/semana
Inglês
Certificados compartilháveis
Tenha o certificado após a conclusão
Cursos 100% on-line
Comece imediatamente e aprenda em seu próprio cronograma.
Cronograma flexível
Definição e manutenção de prazos flexíveis.
Nível intermediário
Aproximadamente 5 meses para ser concluído
Ritmo sugerido de 3 horas/semana
Inglês

Como funciona o programa de cursos integrados

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

Este Programa de cursos integrados contém 5 cursos

Curso1

Curso 1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
estrelas
595 classificações
124 avaliações
Curso2

Curso 2

Nearest Neighbor Collaborative Filtering

4.3
estrelas
292 classificações
66 avaliações
Curso3

Curso 3

Recommender Systems: Evaluation and Metrics

4.4
estrelas
216 classificações
30 avaliações
Curso4

Curso 4

Matrix Factorization and Advanced Techniques

4.3
estrelas
177 classificações
26 avaliações

oferecido por

Placeholder

Universidade de MinnesotaUniversidade de Minnesota

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.