Sobre este Programa de cursos integrados

9,835 visualizações recentes
A Recommender System is a process that seeks to predict user preferences. This Specialization covers all the fundamental techniques in recommender systems, from non-personalized and project-association recommenders through content-based and collaborative filtering techniques, as well as advanced topics like matrix factorization, hybrid machine learning methods for recommender systems, and dimension reduction techniques for the user-product preference space. This Specialization is designed to serve both the data mining expert who would want to implement techniques like collaborative filtering in their job, as well as the data literate marketing professional, who would want to gain more familiarity with these topics. The courses offer interactive, spreadsheet-based exercises to master different algorithms, along with an honors track where you can go into greater depth using the LensKit open source toolkit. By the end of this Specialization, you’ll be able to implement as well as evaluate recommender systems. The Capstone Project brings together the course material with a realistic recommender design and analysis project.
Resultados de carreira do aprendiz
60%
Começou uma nova carreira depois de completar o Programa de cursos integrados.
12%
Conseguiu um aumento ou uma promoção.

Cursos 100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível intermediário

Aprox. 2 meses para completar

9 horas/semana sugeridas

Inglês

Legendas: Inglês
Resultados de carreira do aprendiz
60%
Começou uma nova carreira depois de completar o Programa de cursos integrados.
12%
Conseguiu um aumento ou uma promoção.

Cursos 100% on-line

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível intermediário

Aprox. 2 meses para completar

9 horas/semana sugeridas

Inglês

Legendas: Inglês

Como funciona o programa de cursos integrados

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 5 cursos

Curso1

Curso 1

Introduction to Recommender Systems: Non-Personalized and Content-Based

4.5
estrelas
486 classificações
98 avaliações
Curso2

Curso 2

Nearest Neighbor Collaborative Filtering

4.3
estrelas
242 classificações
56 avaliações
Curso3

Curso 3

Recommender Systems: Evaluation and Metrics

4.3
estrelas
176 classificações
25 avaliações
Curso4

Curso 4

Matrix Factorization and Advanced Techniques

4.3
estrelas
144 classificações
20 avaliações

oferecido por

Logotipo de Universidade de MinnesotaUniversidade de Minnesota

Universidade de MinnesotaUniversidade de Minnesota

0

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • Most learners should be able to complete the specialization in 20-26 weeks.

  • Basic statistics or college algebra, and an ability to work with spreadsheets. For the honors track, you should also be comfortable implementing software in Java.

  • While each component can be useful by itself, the courses do build on each other and should be taken in order.

  • The University of Minnesota does not offer credit for completing this specialization. If you are enrolled elsewhere, you may wish to speak with your advisor or program staff to find out whether this specialization could be used for independent study credit.

  • You will understand and be able to apply the major families of recommender algorithms: non-personalized, product association, content-based, nearest-neighbor, and matrix factorization. You will know and be able to apply a variety of recommender metrics, and will be able to use this knowledge to match the correct recommender system to appplications.

  • The honors track is an optional track where learners add programming recommenders in the open source LensKit toolkit. You should be comfortable with basic data structures, algorithms, and Java to attempt the honors track.

  • This specialization is an extended and updated version of the two prior versions of Introduction to Recommender Systems that we've offered through Coursera. About 50% of the video and 80% of the assessment material are new, and there is an honors track with programming assignments (which existed in the first version of the course only, and have been re-done for this specialization). The Capstone is entirely new.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.