Programa de cursos integrados Power Electronics

Inicia em Abr 17

Programa de cursos integrados Power Electronics

Expand your Engineering Excellence

Create modern power electronics systems for our devices, transportation and infrastructure.

Sobre esse Programa de cursos integrados

Design modern switched-mode power converters; create high-performance control loops around power converters; understand efficiency, power density and cost trade-offs By 2030, 80% of all electrical energy will be processed by power electronics. Professional advantages continue to grow for technical engineers who understand the fundamental principles and technical requirements of modern power conversion systems. This specialization covers design-oriented analysis, modeling and simulation techniques leading to practical engineering of high-performance power electronics systems.

Desenvolvido por:

courses
6 courses

Siga a ordem sugerida ou escolha a sua própria.

projects
Projetos

Projetado para ajudar a praticar e aplicar as habilidades que aprendeu.

certificates
Certificados

Dê destaque às suas novas habilidades em seu currículo ou no seu perfil do LinkedIn.

Cursos
Intermediate Specialization.
Some related experience required.
  1. CURSO 1

    Introduction to Power Electronics

    Próxima sessão: Abr 17 — Mai 15.
    Compromisso
    3 weeks of study, 1-3 hours/week
    Legendas
    English

    Sobre o curso

    This course introduces the basic concepts of switched-mode converter circuits for controlling and converting electrical power with high efficiency. Principles of converter circuit analysis are introduced, and are developed for finding the steady state voltages, current, and efficiency of power converters. Assignments include simulation of a dc-dc converter, analysis of an inverting dc-dc converter, and modeling and efficiency analysis of an electric vehicle system and of a USB power regulator. After completing this course, you will: ● Understand what a switched-mode converter is and its basic operating principles ● Be able to solve for the steady-state voltages and currents of step-down, step-up, inverting, and other power converters ● Know how to derive an averaged equivalent circuit model and solve for the converter efficiency A basic understanding of electrical circuit analysis is an assumed prerequisite for this course.
  2. CURSO 2

    Converter Circuits

    Próxima sessão: Abr 10 — Mai 15.
    Compromisso
    4 weeks of study, 1-3 hours/week
    Legendas
    English

    Sobre o curso

    This course introduces more advanced concepts of switched-mode converter circuits. Realization of the power semiconductors in inverters or in converters having bidirectional power flow is explained. Power diodes, power MOSFETs, and IGBTs are explained, along with the origins of their switching times. Equivalent circuit models are refined to include the effects of switching loss. The discontinuous conduction mode is described and analyzed. A number of well-known converter circuit topologies are explored, including those with transformer isolation. The homework assignments include a boost converter and an H-bridge inverter used in a grid-interfaced solar inverter system, as well as transformer-isolated forward and flyback converters. After completing this course, you will: ● Understand how to implement the power semiconductor devices in a switching converter ● Understand the origins of the discontinuous conduction mode and be able to solve converters operating in DCM ● Understand the basic dc-dc converter and dc-ac inverter circuits ● Understand how to implement transformer isolation in a dc-dc converter, including the popular forward and flyback converter topologies. Completion of the first course Introduction to Power Electronics is the assumed prerequisite for this course.
  3. CURSO 3

    Converter Control

    Próxima sessão: Abr 10 — Mai 15.
    Legendas
    English

    Sobre o curso

    Esse curso ensina como projetar o sistema de controle de uma fonte chaveada. O modelo de circuito equivalente encontrado nos cursos anteriores é extendido para modelo de pequenos sinais variações ca. Esse modelos são solucionados, para encontrarmos as funções de transferência dos conversores e sua malha de controle. Finalmente, a malha de feedback é modelada, analizada, e projetada para atender requisitos como regulação da saída, banda de passagem e resposta transiente, e rejeição de perturbações. Ao completar o curso, você será capaz de projetar e analisar sistemas de controle de fontes chaveadas. Esse curso tem como pré-requesito os cursos de Introdução a Eletrônica de Potência e Circuitos de Conversores.
  4. CURSO 4

    Advanced Converter Control Techniques

    Próxima sessão: Abr 17 — Mai 22.
    Compromisso
    4 semanas de estudo, 2 - 3 horas por semana.
    Legendas
    English

    Sobre o curso

    This course covers advanced converter control techniques, including averaged-switch modeling and Spice simulations, modeling and design of peak current mode and average current mode controlled converters, as well as an introduction to control of single-phase ac grid tied rectifiers and inverters. Design and simulation examples include wide bandwidth point-of-load voltage regulators, low-harmonic power-factor-correction rectifiers, and grid-tied inverters for solar photovoltaic power systems. Upon completion of the course, you will be able to model, design control loops, and simulate state-of-the-art pulse-width modulated (PWM) dc-dc converters, dc-ac inverters, ac-dc rectifiers, and other power electronics systems. This course assumes prior completion of Introduction to Power Electronics, Converter Circuits, and Converter Control
  5. CURSO 5

    Magnetics for Power Electronic Converters

    Próxima sessão: Abr 10 — Mai 15.
    Compromisso
    4 weeks of study, 2-4 hours/week
    Legendas
    English

    Sobre o curso

    This course covers the analysis and design of magnetic components, including inductors and transformers, used in power electronic converters. The course starts with an introduction to physical principles behind inductors and transformers, including the concepts of inductance, core material saturation, airgap and energy storage in inductors, reluctance and magnetic circuit modeling, transformer equivalent circuits, magnetizing and leakage inductance. Multi-winding transformer models are also developed, including inductance matrix representation, for series and parallel structures. Modeling of losses in magnetic components covers core and winding losses, including skin and proximity effects. Finally, a complete procedure is developed for design optimization of inductors in switched-mode power converters. After completing this course, you will: ● Understand the fundamentals of magnetic components, including inductors and transformers ● Be able to analyze and model losses in magnetic components, and understand design trade-offs ● Know how to design and optimize inductors for switched-mode power converters This course assumes ONLY prior completion of Introduction to Power Electronics and Converter Circuits.
  6. CURSO 6

    Capstone Design Project in Power Electronics

    Próxima sessão: Mai 1 — Jun 19.
    Compromisso
    6 weeks of study, 6-10 hours/week
    Legendas
    English

    Sobre o Trabalho de Conclusão

    Learners will design a DC-DC converter that powers USB-C devices (20 V at 3 A) from a dc input voltage source such as a lithium-ion battery pack or a desktop computer power bus. Aspects of the project will include: ● Design of converter power stage and magnetics. Requires mastery of courses 1, 2, and 5. ● Simulation to verify correct steady-state operation. Requires mastery of courses 1, 2 and 4. ● Design of converter control system. Requires mastery of courses 3 and 4. ● Simulation to verify correct control system operation. Requires mastery of courses 3 and 4. ● Preparation of milestone reports documenting the design and its performance The reports will be peer graded.

Desenvolvedores

  • Universidade do Colorado em Boulder

    Set in one of the world's most inspiring and entrepreneurial learning environments, the University of Colorado Boulder enables each member of our community to reach their potential and to Be Boulder through an extraordinary range of challenging academic, research and service opportunities.

    CU-Boulder is a dynamic community of scholars and learners on one of the most spectacular college campuses in the country. As one of 34 U.S. public institutions in the prestigious Association of American Universities (AAU), we have a proud tradition of academic excellence, with five Nobel laureates and more than 50 members of prestigious academic academies.

  • Dr. Khurram Afridi

    Dr. Khurram Afridi

    Assistant Professor
  • Dr. Robert Erickson

    Dr. Robert Erickson

    Professor
  • Dr. Dragan Maksimovic

    Dr. Dragan Maksimovic

    Charles V. Schelke Endowed Professor

FAQs

More questions? Visit the Learner Help Center.