- Data Science
- data forecasting
- Machine Learning
- Data Analysis
- Supply Chain
- Pandas
- Numpy
- Linear Programming (LP)
- Python Programming
- Autoregressive Integrated Moving Average (ARIMA)
- Time Series
- Demand Forecasting
Programa de cursos integrados Machine Learning for Supply Chains
Use Machine Learning in the Supply Chain. You will learn to use machine language techniques to analyze and predict retail stock in the supply chain.
oferecido por

O que você vai aprender
L​earn to merge, clean, and manipulate data using Python libraries such as Numpy and Pandas
G​ain familiarity with the basic and advaned Python functonalities such as importing and using modules, list compreohensions, and lambda functions.
S​olve a supply chain cost optimization problem using Linear Programming with Pulp
B​uilding ARIMA models in Python to make demand predictions
Habilidades que você terá
Sobre este Programa de cursos integrados
Projeto de Aprendizagem Aplicada
Y​ou will learn and practice skills as you go through each of the courses, using the Coursera lab environment. The final course is a capstone project where you will analyze data and make predictions about retail product usage, and then calculate optimal safety stock storage.
There is no specific prerequisite but some general knowledge of supply chain will be helpful, as well as general statistics and calculus.
There is no specific prerequisite but some general knowledge of supply chain will be helpful, as well as general statistics and calculus.
Como funciona o programa de cursos integrados
Fazer cursos
Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possÃvel concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.
Projeto prático
Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.
Obtenha um certificado
Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

Este Programa de cursos integrados contém 4 cursos
Fundamentals of Machine Learning for Supply Chain
This course will teach you how to leverage the power of Python to understand complicated supply chain datasets. Even if you are not familiar with supply chain fundamentals, the rich data sets that we will use as a canvas will help orient you with several Pythonic tools and best practices for exploratory data analysis (EDA). As such, though all datasets are geared towards supply chain minded professionals, the lessons are easily generalizable to other use cases.
Demand Forecasting Using Time Series
This course is the second in a specialization for Machine Learning for Supply Chain Fundamentals. In this course, we explore all aspects of time series, especially for demand prediction. We'll start by gaining a foothold in the basic concepts surrounding time series, including stationarity, trend (drift), cyclicality, and seasonality. Then, we'll spend some time analyzing correlation methods in relation to time series (autocorrelation). In the 2nd half of the course, we'll focus on methods for demand prediction using time series, such as autoregressive models. Finally, we'll conclude with a project, predicting demand using ARIMA models in Python.
Advanced AI Techniques for the Supply Chain
In this course, we’ll learn about more advanced machine learning methods that are used to tackle problems in the supply chain. We’ll start with an overview of the different ML paradigms (regression/classification) and where the latest models fit into these breakdowns. Then, we’ll dive deeper into some of the specific techniques and use cases such as using neural networks to predict product demand and random forests to classify products. An important part to using these models is understanding their assumptions and required preprocessing steps. We’ll end with a project incorporating advanced techniques with an image classification problem to find faulty products coming out of a machine.
Capstone Project: Predicting Safety Stock
In this course, we'll make predictions on product usage and calculate optimal safety stock storage. We'll start with a time series of shoe sales across multiple stores on three different continents. To begin, we'll look for unique insights and other interesting things we can find in the data by performing groupings and comparing products within each store. Then, we'll use a seasonal autoregressive integrated moving average (SARIMA) model to make predictions on future sales. In addition to making predictions, we'll analyze the provided statistics (such as p-score) to judge the viability of using the SARIMA model to make predictions. Then, we'll tune the hyper-parameters of the model to garner better results and higher statistical significance. Finally, we'll make predictions on safety stock by looking to the data for monthly usage predictions and calculating safety stock from the formula involving lead times.
oferecido por

LearnQuest
LearnQuest is the preferred training partner to the world’s leading companies, organizations, and government agencies. Our team boasts 20+ years of experience designing, developing and delivering a full suite industry-leading technology education classes and training solutions across the globe. Our trainers, equipped with expert industry experience and an unparalleled commitment to quality, facilitate classes that are offered in various delivery formats so our clients can obtain the training they need when and where they need it.
Perguntas Frequentes – FAQ
Qual é a polÃtica de reembolso?
Posso me inscrever em um único curso?
Existe algum auxÃlio financeiro disponÃvel?
Posso fazer o curso gratuitamente?
Este curso é realmente 100% on-line? Eu preciso assistir alguma aula pessoalmente?
Quanto tempo é necessário para concluir a Especialização?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Vou ganhar créditos universitários por concluir a Especialização?
What will I be able to do upon completing the Specialization?
Mais dúvidas? Visite o Central de Ajuda ao estudante.