- Deep Learning
- Machine Learning
- Explainable Machine Learning
- processing electronic health records
- clinical decision support systems
- International Classification of Diseases
- mining clinical databases
- Descriptive Statistics
- Electronic Health Records
- Ethics in EHR
- preprocessing of EHR and imputation
- Convolutional Neural Network
Programa de cursos integrados Informed Clinical Decision Making using Deep Learning
Apply Deep Learning in Electronic Health Records. Understand the road path from data mining of clinical databases to clinical decision support systems
oferecido por


O que você vai aprender
Extract and preprocess data from complex clinical databases
Apply deep learning in Electronic Health Records
Imputation of Electronic Health Records and data encodings
Explainable, fair and privacy-preserved Clinical Decision Support Systems
Habilidades que você terá
Sobre este Programa de cursos integrados
Projeto de Aprendizagem Aplicada
Learners have the opportunity to choose and undertake an exercise based on MIMIC-III extracted datasets that combines knowledge from:
- Data mining of Clinical Databases to query the MIMIC database
- Deep learning in Electronic Health Records to pre-process EHR and build deep learning models
- Explainable deep learning models for healthcare to explain the models decision
Learners can choose from:
1. Permutation feature importance on the MIMIC critical care database
The technique is applied both on logistic regression and on an LSTM model. The explanations derived are global explanations of the model.
2. LIME on the MIMIC critical care database
The technique is applied on both logistic regression and an LSTM model. The explanations derived are local explanations of the model.
3. Grad-CAM on the MIMIC critical care database
GradCam is implemented and applied on an LSTM model that predicts mortality. The explanations derived are local explanations of the model.
Last year undergraduate or master students of computing science or engineering. Basic knowledge on SQL queries and python is required.
Last year undergraduate or master students of computing science or engineering. Basic knowledge on SQL queries and python is required.
Como funciona o programa de cursos integrados
Fazer cursos
Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.
Projeto prático
Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.
Obtenha um certificado
Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

Este Programa de cursos integrados contém 5 cursos
Data mining of Clinical Databases - CDSS 1
This course will introduce MIMIC-III, which is the largest publicly Electronic Health Record (EHR) database available to benchmark machine learning algorithms. In particular, you will learn about the design of this relational database, what tools are available to query, extract and visualise descriptive analytics.
Deep learning in Electronic Health Records - CDSS 2
Overview of the main principles of Deep Learning along with common architectures. Formulate the problem for time-series classification and apply it to vital signals such as ECG. Applying this methods in Electronic Health Records is challenging due to the missing values and the heterogeneity in EHR, which include both continuous, ordinal and categorical variables. Subsequently, explore imputation techniques and different encoding strategies to address these issues. Apply these approaches to formulate clinical prediction benchmarks derived from information available in MIMIC-III database.
Explainable deep learning models for healthcare - CDSS 3
This course will introduce the concepts of interpretability and explainability in machine learning applications. The learner will understand the difference between global, local, model-agnostic and model-specific explanations. State-of-the-art explainability methods such as Permutation Feature Importance (PFI), Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanation (SHAP) are explained and applied in time-series classification. Subsequently, model-specific explanations such as Class-Activation Mapping (CAM) and Gradient-Weighted CAM are explained and implemented. The learners will understand axiomatic attributions and why they are important. Finally, attention mechanisms are going to be incorporated after Recurrent Layers and the attention weights will be visualised to produce local explanations of the model.
Clinical Decision Support Systems - CDSS 4
Machine learning systems used in Clinical Decision Support Systems (CDSS) require further external validation, calibration analysis, assessment of bias and fairness. In this course, the main concepts of machine learning evaluation adopted in CDSS will be explained. Furthermore, decision curve analysis along with human-centred CDSS that need to be explainable will be discussed. Finally, privacy concerns of deep learning models and potential adversarial attacks will be presented along with the vision for a new generation of explainable and privacy-preserved CDSS.
oferecido por

University of Glasgow
The University of Glasgow has been changing the world since 1451. It is a world top 100 university (THE, QS) with one of the largest research bases in the UK.
Perguntas Frequentes – FAQ
Qual é a política de reembolso?
Posso me inscrever em um único curso?
Existe algum auxílio financeiro disponível?
Posso fazer o curso gratuitamente?
Este curso é realmente 100% on-line? Eu preciso assistir alguma aula pessoalmente?
Quanto tempo é necessário para concluir a Especialização?
What background knowledge is necessary?
Do I need to take the courses in a specific order?
Vou ganhar créditos universitários por concluir a Especialização?
What will I be able to do upon completing the Specialization?
Mais dúvidas? Visite o Central de Ajuda ao estudante.