Sobre este Programa de cursos integrados

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível avançado

Inglês

Legendas: Inglês, Coreano, Espanhol

cursos 100% online

Comece imediatamente e aprenda em seu próprio cronograma.

Cronograma flexível

Definição e manutenção de prazos flexíveis.

Nível avançado

Inglês

Legendas: Inglês, Coreano, Espanhol

Como funciona o programa de cursos integrados

Fazer cursos

Um programa de cursos integrados do Coursera é uma série de cursos para ajudá-lo a dominar uma habilidade. Primeiramente, inscreva-se no programa de cursos integrados diretamente, ou avalie a lista de cursos e escolha por qual você gostaria de começar. Ao se inscrever em um curso que faz parte de um programa de cursos integrados, você é automaticamente inscrito em todo o programa de cursos integrados. É possível concluir apenas um curso — você pode pausar a sua aprendizagem ou cancelar a sua assinatura a qualquer momento. Visite o seu painel de aprendiz para controlar suas inscrições em cursos e progresso.

Projeto prático

Todos os programas de cursos integrados incluem um projeto prático. Você precisará completar com êxito o(s) projeto(s) para concluir o programa de cursos integrados e obter o seu certificado. Se o programa de cursos integrados incluir um curso separado para o projeto prático, você precisará completar todos os outros cursos antes de iniciá-lo.

Obtenha um certificado

Ao concluir todos os cursos e completar o projeto prático, você obterá um certificado que pode ser compartilhado com potenciais empregadores e com sua rede profissional.

how it works

Este Programa de cursos integrados contém 7 cursos

Curso1

Introduction to Deep Learning

4.6
1,059 classificações
240 avaliações
Curso2

How to Win a Data Science Competition: Learn from Top Kagglers

4.7
662 classificações
143 avaliações
Curso3

Bayesian Methods for Machine Learning

4.6
392 classificações
102 avaliações
Curso4

Practical Reinforcement Learning

4.1
248 classificações
65 avaliações

Instrutores

Avatar

Mikhail Hushchyn

Researcher at Laboratory for Methods of Big Data Analysis
HSE Faculty of Computer Science
Avatar

Alexey Zobnin

Accosiate professor
HSE Faculty of Computer Science
Avatar

Alexey Artemov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Sergey Yudin

Analyst-developer
Yandex
Avatar

Alexander Guschin

Visiting lecturer at HSE, Lecturer at MIPT
HSE Faculty of Computer Science
Avatar

Nikita Kazeev

Researcher
HSE Faculty of Computer Science
Avatar

Andrei Ustyuzhanin

Head of Laboratory for Methods of Big Data Analysis
HSE Faculty of Computer Science
Avatar

Dmitry Ulyanov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Marios Michailidis

Research Data Scientist
H2O.ai
Avatar

Daniil Polykovskiy

Sr. Research Scientist
HSE Faculty of Computer Science
Avatar

Ekaterina Lobacheva

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Andrei Zimovnov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexander Novikov

Researcher
HSE Faculty of Computer Science
Avatar

Dmitry Altukhov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Pavel Shvechikov

Researcher at HSE and Sberbank AI Lab
HSE Faculty of Computer Science
Avatar

Anton Konushin

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Anna Kozlova

Team Lead
Yandex
Avatar

Mikhail Trofimov

Visiting lecturer
HSE Faculty of Computer Science
Avatar

Evgeny Sokolov

Senior Lecturer
HSE Faculty of Computer Science
Avatar

Alexander Panin

Lecturer
HSE Faculty of Computer Science
Avatar

Anna Potapenko

Researcher
HSE Faculty of Computer Science

Parceiros do setor

Industry Partner Logo #0

Sobre National Research University Higher School of Economics

National Research University - Higher School of Economics (HSE) is one of the top research universities in Russia. Established in 1992 to promote new research and teaching in economics and related disciplines, it now offers programs at all levels of university education across an extraordinary range of fields of study including business, sociology, cultural studies, philosophy, political science, international relations, law, Asian studies, media and communicamathematics, engineering, and more. Learn more on www.hse.ru...

Perguntas Frequentes – FAQ

  • Sim! Para começar, clique na carta de curso que lhe interessa e se inscreva. Você pode se inscrever e concluir o curso para ganhar um certificado compartilhável ou você pode auditar para ver os materiais do curso de graça. Quando você se inscrever em um curso que faz parte de uma especialização, você está automaticamente inscrito para a especialização completa. Visite o seu painel de aluno para acompanhar o seu progresso.

  • Este curso é totalmente on-line, então não existe necessidade de aparecer em uma sala de aula pessoalmente. Você pode acessar suas palestras, leituras e atribuições a qualquer hora e qualquer lugar, via web ou dispositivo móvel.

  • Time to completion can vary based on your schedule, but most learners are able to complete the Specialization in 8-10 months.

  • As prerequisites we assume calculus and linear algebra (especially derivatives, matrices and operations with them), probability theory (random variables, distributions, moments), basic programming in python (functions, loops, numpy), basic machine learning (linear models, decision trees, boosting and random forests). Our intended audience are all people who are already familiar with basic machine learning and want to get a hand-on experience of research and development in the field of modern machine learning.

  • We recommend taking the “Intro to Deep Learning” course first as most of the subsequent courses will build on its material. All other courses can be taken in any order.

  • Coursera courses and certificates don't carry university credit, though some universities may choose to accept Specialization Certificates for credit. Check with your institution to learn more.

  • After completing 7 courses of the Specialization you will be able to:

    Use modern deep neural networks for various machine learning problems with complex inputs;

    Participate in data science competitions and use the most popular and effective machine learning tools;

    Adopt the best practices of data exploration, preprocessing and feature engineering;

    Perform Bayesian inference, understand Bayesian Neural Networks and Variational Autoencoders;

    Use reinforcement learning methods to build agents for games and other environments;

    Solve computer vision problems with a combination of deep models and classical computer vision algorithms;

    Outline state-of-the-art techniques for natural language tasks, such as sentiment analysis, semantic slot filling, summarization, topics detection, and many others;

    Build goal-oriented dialogue agents and train them to hold a human-like conversation;

    Understand limitations of standard machine learning methods and design new algorithms for new tasks.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.