Chevron Left
Voltar para XG-Boost 101: Used Cars Price Prediction

Comentários e feedback de alunos de XG-Boost 101: Used Cars Price Prediction da instituição Coursera Project Network

4.6
estrelas
17 classificações
5 avaliações

Sobre o curso

In this hands-on project, we will train 3 Machine Learning algorithms namely Multiple Linear Regression, Random Forest Regression, and XG-Boost to predict used cars prices. This project can be used by car dealerships to predict used car prices and understand the key factors that contribute to used car prices. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind XG-Boost Algorithm - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn, Plotly and Word Cloud. - Standardize the data and split them into train and test datasets.   - Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn. - Assess the performance of regression models using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions....

Melhores avaliações

Filtrar por:

1 — 5 de 5 Avaliações para o XG-Boost 101: Used Cars Price Prediction

por Md. M I C

18 de Mar de 2021

Very engaging and clear explanation. One of the best guided projects.

por Satya N

22 de Fev de 2021

Excellent Course

por Gregory G J

14 de Jan de 2021

Thumbs Up!

por Paúl A A V

10 de Mar de 2021

Nice

por Akash S C

29 de Mai de 2021

Not worth the money! Way short and simple introduction to XGBoost for the price of a full month course on Coursera.