XG-Boost 101: Used Cars Price Prediction

4.6
estrelas
17 classificações
oferecido por
Coursera Project Network
Neste projeto guiado, você irá:

Understand the theory and intuition behind XG-Boost Algorithm.

Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn.

Assess the performance of trained regression models using various Key performance indicators.

Clock2 hours
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this hands-on project, we will train 3 Machine Learning algorithms namely Multiple Linear Regression, Random Forest Regression, and XG-Boost to predict used cars prices. This project can be used by car dealerships to predict used car prices and understand the key factors that contribute to used car prices. By the end of this project, you will be able to: - Understand the applications of Artificial Intelligence and Machine Learning techniques in the banking industry - Understand the theory and intuition behind XG-Boost Algorithm - Import key Python libraries, dataset, and perform Exploratory Data Analysis. - Perform data visualization using Seaborn, Plotly and Word Cloud. - Standardize the data and split them into train and test datasets.   - Build, train and evaluate XG-Boost, Random Forest, Decision Tree, and Multiple Linear Regression Models Using Scikit-Learn. - Assess the performance of regression models using various Key Performance Indicators (KPIs). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Artificial Intelligence (AI)
  • Python Programming
  • Machine Learning
  • regression

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Understand the problem statement and business case

  2. Import libraries/datasets and perform Exploratory Data Analysis

  3. Perform Data Visualization - Part #1

  4. Perform Data Visualization - Part #2

  5. Prepare the data before model training

  6. Train and Evaluate a Multiple Linear Regression model

  7. Train and Evaluate a Decision Tree and a Random Forest models

  8. Understand the Theory and Intuition Behind XG-Boost Algorithm

  9. Train and Evaluate a XG-Boost model

  10. Compare models and calculate Regression KPIs

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do XG-BOOST 101: USED CARS PRICE PREDICTION

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao estudante.