Logistic Regression 101: US Household Income Classification

oferecido por
Neste projeto guiado, você irá:

Understand the theory and intuition behind Logistic Regression and XGBoost models.

Build and train Logistic Regression and XGBoost models to classify the Income Bracket of US Household.

Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall.

2 Hours
Básico
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

In this hands-on project, we will train Logistic Regression and XG-Boost models to predict whether a particular person earns less than 50,000 US Dollars or more than 50,000 US Dollars annually. This data was obtained from U.S. Census database and consists of features like occupation, age, native country, capital gain, education, and work class. By the end of this project, you will be able to: - Understand the theory and intuition behind Logistic Regression and XG-Boost models - Import key Python libraries, dataset, and perform Exploratory Data Analysis like removing missing values, replacing characters, etc. - Perform data visualization using Seaborn. - Prepare the data to increase the predictive power of Machine Learning models by One-Hot Encoding, Label Encoding, and Train/Test Split - Build and train Logistic Regression and XG-Boost models to classify the Income Bracket of U.S. Household. - Assess the performance of trained model and ensure its generalization using various KPIs such as accuracy, precision and recall. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Deep Learning

  • Machine Learning

  • Python Programming

  • Artificial Intelligene(AI)

  • classification

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Understand the problem statement and business case

  2. Import Datasets and Libraries

  3. Exploratory Data Analysis

  4. Perform Data Visualization

  5. Prepare the data to feed the model

  6. Understand the Problem Statement and Business Case

  7. Build and assess the performance of Logistic Regression models

  8. Build and assess the performance of XG-Boost model

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

Não há auxílio financeiro disponível para projetos guiados.

A participação como ouvinte não está disponível para projetos guiados.

Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.

Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.