Simple Nearest Neighbors Regression and Classification

oferecido por
Neste projeto guiado, você irá:

Formulate small examples of KNN classification by hand

Implement a KNN Classification algorithm in Python

Implement a KNN Regression algorithm in Python

2 hours
Intermediário
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

In this 2-hour long project-based course, we will explore the basic principles behind the K-Nearest Neighbors algorithm, as well as learn how to implement KNN for decision making in Python. A simple, easy-to-implement supervised machine learning algorithm that can be used to solve both classification and regression problems is the k-nearest neighbors (KNN) algorithm. The fundamental principle is that you enter a known data set, add an unknown data point, and the algorithm will tell you which class corresponds to that unknown data point. The unknown is characterized by a straightforward neighborly vote, where the "winner" class is the class of near neighbors. It is most commonly used for predictive decision-making. For instance,: Is a consumer going to default on a loan or not? Will the company make a profit? Should we extend into a certain sector of the market? Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

  • Statistical Analysis

  • Machine Learning

  • Python Programming

  • K-Nearest Neighbors Algorithm (K-NN)

  • Classification Algorithms

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Understanding the Basic Structure of a KNN model

  2. Computing a simple KNN by hand

  3. Looking at an example of a KNN in action in Python

  4. Implementing an example KNN Regression in Python

  5. Implementing an example KNN Classification in Python

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

Não há auxílio financeiro disponível para projetos guiados.

A participação como ouvinte não está disponível para projetos guiados.

Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.

Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.