Series Temporales con Pycaret y Python

oferecido por
Coursera Project Network
Neste Projeto Guiado, você irá:

Entrenar diferentes modelos como Xgboost, Catboost o random forest para predecir series temporales

Predecir datos futuros en base a series de tiempo

Entrenar modelos avanzados de Machine Learning para series temporales

Clock2 horas
IntermediateIntermediário
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsEspanhol
LaptopApenas em desktop

En este proyecto aplicado y práctico aprenderás a entrenar modelos capaces de predecir series temporales. Para ello utilizaremos la librería de Pycaret con Python y entrenaremos modelos como: XGBoost, Catboost o Random forest. También aprenderemos a generar modelos más avanzados con lñas diferentes técnicas de ensamblado de modelos. Al finalizar este curso habrás aprendido a entrenar tus propios modelos y a aplicarlos en tus propios proyectos.

Habilidades que você desenvolverá

Time SeriesMachine LearningXgboostPyCaret

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introducción a las series temporales

  2. Clases de modelos de series de tiempo

  3. Fundamentos de Pycaret

  4. Series temporales univariantes. Pre-procesamiento

  5. Ejercicio aplicado. Pre-procesamiento de datos

  6. Series temporales univariantes. Entrenamiento del modelo

  7. Ejercicio aplicado. Entrenamiento de un modelo para predecir series de tiempo

  8. Series temporales univariantes. Evaluación del modelo

  9. Ejercicio aplicado. Evaluación del modelo

  10. Series temporales univariantes. Modelos avanzados

  11. Series temporales múltiples. Pre-procesamiento

  12. Ejercicio aplicado. Series temporales múltiples

  13. Series temporales múltiples. Entrenamiento y evaluación del modelo

  14. Ejercicio aplicado. Series temporales múltiples. Parte II

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.