Image Compression with K-Means Clustering

4.6
estrelas
234 classificações
oferecido por
Coursera Project Network
5,134 já se inscreveram
Neste projeto guiado, você irá:

Explain the steps involved in k-means clustering

Apply k-means clustering with scikit-learn to compress images

Create interactive, GUI components in Jupyter notebooks using Jupyter widgets

Clock2 hours
BeginnerBásico
CloudSem necessidade de download
VideoVídeo em tela dividida
Comment DotsInglês
LaptopApenas em desktop

In this project, you will apply the k-means clustering unsupervised learning algorithm using scikit-learn and Python to build an image compression application with interactive controls. By the end of this 45-minute long project, you will be competent in pre-processing high-resolution image data for k-means clustering, conducting basic exploratory data analysis (EDA) and data visualization, applying a computationally time-efficient implementation of the k-means algorithm, Mini-Batch K-Means, to compress images, and leverage the Jupyter widgets library to build interactive GUI components to select images from a drop-down list and pick values of k using a slider. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, and scikit-learn pre-installed. Notes: - You will be able to access the cloud desktop 5 times. However, you will be able to access instructions videos as many times as you want. - This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Habilidades que você desenvolverá

Machine LearningclusteringIpythonK-Means ClusteringScikit-Learn

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Introduction and Overview

  2. Data Preprocessing

  3. Visualizing the Color Space using Point Clouds

  4. Visualizing the K-means Reduced Color Space

  5. Creating Interactive Controls with Jupyter Widgets

  6. K-means Image Compression with Interactive Controls

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Instrutores

Avaliações

Principais avaliações do IMAGE COMPRESSION WITH K-MEANS CLUSTERING

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Perguntas Frequentes – FAQ

  • Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

  • Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

  • Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

  • Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

  • Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

  • Não há auxílio financeiro disponível para projetos guiados.

  • A participação como ouvinte não está disponível para projetos guiados.

  • Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

  • Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.

Mais dúvidas? Visite o Central de Ajuda ao Aprendiz.