Explainable AI: Scene Classification and GradCam Visualization

4.7
estrelas

48 classificações

oferecido por

2.174 já se inscreveram

Neste projeto guiado, você irá:

Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

Visualize the Activation Maps used by CNN to make predictions using Grad-CAM and Deploy the trained model using Tensorflow Serving

2 hours
Intermediário
Sem necessidade de download
Vídeo em tela dividida
Inglês
Apenas em desktop

In this 2 hour long hands-on project, we will train a deep learning model to predict the type of scenery in images. In addition, we are going to use a technique known as Grad-Cam to help explain how AI models think. This project could be practically used for detecting the type of scenery from the satellite images.

Habilidades que você desenvolverá

  • Deep Learning

  • Machine Learning

  • Python Programming

  • Artificial Intelligence(AI)

  • Computer Vision

Aprender passo a passo

Em um vídeo reproduzido em uma tela dividida com a área de trabalho, seu instrutor o orientará sobre esses passos:

  1. Understand the theory and intuition behind Deep Neural Networks, Residual Nets, and Convolutional Neural Networks (CNNs)

  2. Apply Python libraries to import, pre-process and visualize images

  3. Perform data augmentation to improve model generalization capability

  4. Build a deep learning model based on Convolutional Neural Network and Residual blocks using Keras with Tensorflow 2.0 as a backend

  5. Compile and fit Deep Learning model to training data

  6. Assess the performance of trained CNN and ensure its generalization using various KPIs such as accuracy, precision and recall

  7. Understand the theory and intuition behind GradCam and Explainable AI

  8. Visualize the Activation Maps used by CNN to make predictions using Grad-CAM

Como funcionam os projetos guiados

Sua área de trabalho é um espaço em nuvem, acessado diretamente do navegador, sem necessidade de nenhum download

Em um vídeo de tela dividida, seu instrutor te orientará passo a passo

Avaliações

Principais avaliações do EXPLAINABLE AI: SCENE CLASSIFICATION AND GRADCAM VISUALIZATION

Visualizar todas as avaliações

Perguntas Frequentes – FAQ

Ao comprar projetos guiados, você recebe tudo o que precisa para completá-los, inclusive acesso a um espaço de trabalho de área de trabalho na nuvem por meio do seu navegador web, que contém o software e os arquivos necessários para iniciar, além de um vídeo de instruções passo a passo de um especialista no assunto.

Como seu espaço de trabalho tem uma área de trabalho na nuvem dimensionada para notebooks e computadores desktop, os projetos guiados não estão disponíveis para dispositivos móveis.

Os instrutores do projeto guiado são especialistas no assunto, têm experiência com a habilidade, a ferramenta ou o domínio do projeto e amam compartilhar seus conhecimentos para ajudar milhões de aprendizes do mundo todo.

Você pode baixar e manter todos os arquivos que foram criados para seu projeto guiado. Para fazer isso, você pode usar o recurso "Navegador de arquivos" enquanto acessa a área de trabalho na nuvem.

Reembolsos não estão disponíveis para projetos guiados. Consulte nossa política de reembolso completa.

Não há auxílio financeiro disponível para projetos guiados.

A participação como ouvinte não está disponível para projetos guiados.

Na parte superior da página, você pode clicar no nível de experiência deste projeto guiado para visualizar os pré-requisitos de conhecimento. Em cada nível dos projetos guiados, seu instrutor o guiará passo a passo.

Sim, tudo o que você precisa para completar o projeto guiado estará disponível em uma área de trabalho na nuvem disponível no seu navegador.

Você aprenderá na prática ao completar tarefas em um ambiente com tela dividida, diretamente em seu navegador. No lado esquerdo da tela, você completa a tarefa no seu espaço de trabalho. No lado direito, você assiste a um instrutor que o guiará pelo projeto, passo a passo.